scholarly journals Detailed Patterns of Methane Distribution in the German Bight

2021 ◽  
Vol 8 ◽  
Author(s):  
Ingeborg Bussmann ◽  
Holger Brix ◽  
Götz Flöser ◽  
Uta Ködel ◽  
Philipp Fischer

Although methane is a widely studied greenhouse gas, uncertainties remain with respect to the factors controlling its distribution and diffusive flux into the atmosphere, especially in highly dynamic coastal waters. In the southern North Sea, the Elbe and Weser rivers are two major tributaries contributing to the overall methane budget of the southern German Bight. In June 2019, we continuously measured methane and basic hydrographic parameters at a high temporal and spatial resolution (one measurement per minute every 200–300 m) on a transect between Cuxhaven and Helgoland. These measurements revealed that the overall driver of the coastal methane distribution is the dilution of riverine methane-rich water with methane-poor marine water. For both the Elbe and Weser, we determined an input concentration of 40–50 nmol/L compared to only 5 nmol/L in the marine area. Accordingly, we observed a comparatively steady dilution pattern of methane concentration toward the marine realm. Moreover, small-scale anomalous patterns with unexpectedly higher dissolved methane concentrations were discovered at certain sites and times. These patterns were associated with the highly significant correlations of methane with oxygen or turbidity. However, these local anomalies were not consistent over time (days, months). The calculated diffusive methane flux from the water into the atmosphere revealed local values approximately 3.5 times higher than background values (median of 36 and 128 μmol m–2 d–1). We evaluate that this occurred because of a combination of increasing wind speed and increasing methane concentration at those times and locations. Hence, our results demonstrate that improved temporal and spatial resolution of methane measurements can provide a more accurate estimation and, consequently, a more functional understanding of the temporal and spatial dynamics of the coastal methane flux.

1992 ◽  
Vol 70 (8) ◽  
pp. 1546-1552 ◽  
Author(s):  
Kevin M. O'Neill

To determine the effect of short-term temporal and small-scale spatial variation in availability of specific prey groups, field studies of prey use by a population of the robber fly Efferia staminea were undertaken. In one study, the appearance of mating swarms of winged males of the ant Formica subpolita was associated with a rapid increase in the proportion of E. staminea observed feeding, and an increase in the proportion of these ants taken as prey. The change in diet occurred over the same time scale as the change in the activity of the ants. When the swarms were absent from the same area, the fewer E. staminea observed feeding utilized a greater diversity of prey taxa and sizes. The proportion of conspecifics in prey records during swarms of F. subpolita was only one-tenth of that during non-swarm intervals, suggesting that high alternative prey availability decreases the incidence of cannibalism in this species. In the second study, E. staminea used a wider diversity of prey on an area of grassland with native vegetation than on a nearby area of grassland that had been reseeded with the grass Agropyron intermedium as part of a range-management program. In the latter area, a large population of crambine moths supplied a major portion of the robber flies' diet. The results of this population-level study illustrate the fine scale over which the composition of the diet of E. staminea varies, and show that the diet of a generalist predator is a function of the temporal and spatial scales over which sampling occurs. The implications of the data for interpreting the composition of the diet, population dynamics, and impact upon prey communities of robber flies are discussed.


2010 ◽  
Vol 28 (3) ◽  
pp. 873-881 ◽  
Author(s):  
M. Samara ◽  
R. G. Michell ◽  
K. Asamura ◽  
M. Hirahara ◽  
D. L. Hampton ◽  
...  

Abstract. We present results from ground-based auroral observations coordinated with the Japanese satellite, Reimei, that took place during the winters of 2006, 2007 and 2008 at Poker Flat, Alaska. Comparable temporal and spatial resolution for the optical and in situ particle data, allowed for investigation of small scale and/or rapidly time-varying auroral structures. Four satellite passes through diffuse auroral structures were identified. The structures within the aurora, whether stationary or time-varying (pulsating aurora), were most closely correlated with the highest energy precipitating electrons measured by these detectors (8 to 12 keV). This relation is found to be consistent across all four examples, revealing that the electron precipitation responsible for these diffuse auroral structures is primarily that of the ≥8 keV electrons.


2017 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yersultan Mirasbekov ◽  
Adina Zhumakhanova ◽  
Almira Zhantuyakova ◽  
Kuanysh Sarkytbayev ◽  
Dmitry V. Malashenkov ◽  
...  

AbstractA machine learning approach was employed to detect and quantify Microcystis colonial morphospecies using FlowCAM-based imaging flow cytometry. The system was trained and tested using samples from a long-term mesocosm experiment (LMWE, Central Jutland, Denmark). The statistical validation of the classification approaches was performed using Hellinger distances, Bray–Curtis dissimilarity, and Kullback–Leibler divergence. The semi-automatic classification based on well-balanced training sets from Microcystis seasonal bloom provided a high level of intergeneric accuracy (96–100%) but relatively low intrageneric accuracy (67–78%). Our results provide a proof-of-concept of how machine learning approaches can be applied to analyze the colonial microalgae. This approach allowed to evaluate Microcystis seasonal bloom in individual mesocosms with high level of temporal and spatial resolution. The observation that some Microcystis morphotypes completely disappeared and re-appeared along the mesocosm experiment timeline supports the hypothesis of the main transition pathways of colonial Microcystis morphoforms. We demonstrated that significant changes in the training sets with colonial images required for accurate classification of Microcystis spp. from time points differed by only two weeks due to Microcystis high phenotypic heterogeneity during the bloom. We conclude that automatic methods not only allow a performance level of human taxonomist, and thus be a valuable time-saving tool in the routine-like identification of colonial phytoplankton taxa, but also can be applied to increase temporal and spatial resolution of the study.


Zoology ◽  
2021 ◽  
pp. 125931
Author(s):  
R.P. Eusébio ◽  
H. Enghoff ◽  
A. Solodovnikov ◽  
A. Michelsen ◽  
P. Barranco ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Yassin Meklach ◽  
Chantal Camenisch ◽  
Abderrahmane Merzouki ◽  
Ricardo Garcia Herrera

Archival records and historical documents offer direct observation of weather and atmospheric conditions and have the highest temporal and spatial resolution, and precise dating, of the available climate proxies. They also provide information about variables such as temperature, precipitation and climate extremes, as well as floods, droughts and storms. The present work studied Arab-Islamic documentary sources covering the western Mediterranean region (documents written by Arab-Islamic historians that narrate social, political and religious history) available for the period AD 680–1815. They mostly provide information on hydrometeorological events. In Iberia the most intense droughts were reported during AD 747–753, AD 814–822, AD 846–847, AD 867–874 and AD 914–915 and in the Maghreb AD 867–873, AD 898–915, AD 1104–1147, AD 1280–1340 and AD 1720–1815 had prevalent drought conditions. Intense rain episodes are also reported.


Sign in / Sign up

Export Citation Format

Share Document