scholarly journals An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells

2012 ◽  
Vol 3 ◽  
Author(s):  
Lanay Tierney ◽  
Jörg Linde ◽  
Sebastian Müller ◽  
Sascha Brunke ◽  
Juan Camilo Molina ◽  
...  
2020 ◽  
Vol 6 (2) ◽  
pp. 57 ◽  
Author(s):  
Manuela Gómez-Gaviria ◽  
Nancy E. Lozoya-Pérez ◽  
Monika Staniszewska ◽  
Bernardo Franco ◽  
Gustavo A. Niño-Vega ◽  
...  

The secretory pathway in Candida albicans involves the protein translocation into the lumen of the endoplasmic reticulum and transport to the Golgi complex, where proteins undergo posttranslational modifications, including glycosylation and proteolysis. The Golgi-resident Kex2 protease is involved in such processing and disruption of its encoding gene affected virulence and dimorphism. These previous studies were performed using cells without URA3 or with URA3 ectopically placed into the KEX2 locus. Since these conditions are known to affect the cellular fitness and the host–fungus interaction, here we generated a kex2Δ null mutant strain with URA3 placed into the neutral locus RPS1. The characterization of this strain showed defects in the cell wall composition, with a reduction in the N-linked mannan content, and the increment in the levels of O-linked mannans, chitin, and β-glucans. The defects in the mannan content are likely linked to changes in Golgi-resident enzymes, as the α-1,2-mannosyltransferase and α-1,6-mannosyltransferase activities were incremented and reduced, respectively. The mutant cells also showed reduced ability to stimulate cytokine production and phagocytosis by human mononuclear cells and macrophages, respectively. Collectively, these data showed that loss of Kex2 affected the cell wall composition, the protein glycosylation pathways, and interaction with innate immune cells.


2020 ◽  
Author(s):  
Yunwei Shi ◽  
Peipei Qian ◽  
Jiajing Sheng ◽  
Xu Zhang ◽  
Xiaoning Wang ◽  
...  

AbstractEndothelial cells (ECs) constitute a monolayer that covers the interior surface of blood vessels and participates in various processes. Although vascular ECs share certain common properties, they differ in both structure and function. So far, the transcriptome profile and heterogeneity of the full repertoire of ECs in vertebrates remain poorly understood. The relatively small size of zebrafish embryos and larvae allows a feasible analysis of the broad spectrum of ECs within every tissue and organ of a whole organism. ECs have been suggested to be conditional innate immune cells. Whether ECs possess the comparable capacity of involvement in immune response is so far undetermined. Currently, through single-cell RNA sequencing analysis of total ECs of zebrafish we identified a fraction of endothelial cells expressing the marker genes of innate immune cells, named “endoimmune cells”. We found the percentage of these cells gradually increased along with the embryonic development. Then, we observed the patrolling mCherry+ cells displayed the morphology alike to the macrophages and neutrophils. Furthermore, we revealed that some of the kdrl:ras-mCherry ECs were labelled with coro1a:EGFP as well. In addition, we demonstrated that the mCherry+ EC from intersegmental vessel could gradually present the expression of GFP in Tg(kdrl:ras-mCherry∷coro1a:GFP) line, suggesting the endoimmune cells are derived from ECs. Importantly, we showed the endoimmune cells are responsive to the inflammation in zebrafish. Taken together, these data suggested the existence of endoimmune cells, a novel type of subpopulations of ECs. It will provide novel insights for understanding endothelial roles in both normal physiological function and human diseases and enable endoimmune cells-based target therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sabina Sahanic ◽  
Judith Löffler-Ragg ◽  
Piotr Tymoszuk ◽  
Richard Hilbe ◽  
Egon Demetz ◽  
...  

In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Elisa M. Vesely ◽  
Robert B. Williams ◽  
James B. Konopka ◽  
Michael C. Lorenz

ABSTRACT Candida albicans is the most important medically relevant fungal pathogen, with disseminated candidiasis being the fourth most common hospital-associated bloodstream infection. Macrophages and neutrophils are innate immune cells that play a key role in host defense by phagocytosing and destroying C. albicans cells. To survive this attack by macrophages, C. albicans generates energy by utilizing alternative carbon sources that are available in the phagosome. Interestingly, metabolism of amino acids and carboxylic acids by C. albicans raises the pH of the phagosome and thereby blocks the acidification of the phagosome, which is needed to initiate antimicrobial attack. In this work, we demonstrate that metabolism of a third type of carbon source, the amino sugar GlcNAc, also induces pH neutralization and survival of C. albicans upon phagocytosis. This mechanism is genetically and physiologically distinct from the previously described mechanisms of pH neutralization, indicating that the robust metabolic plasticity of C. albicans ensures survival upon macrophage phagocytosis. Phagocytosis by innate immune cells is one of the most effective barriers against the multiplication and dissemination of microbes within the mammalian host. Candida albicans, a pathogenic yeast, has robust mechanisms that allow survival upon macrophage phagocytosis. C. albicans survives in part because it can utilize the alternative carbon sources available in the phagosome, including carboxylic acids and amino acids. Furthermore, metabolism of these compounds raises the pH of the extracellular environment, which combats the acidification and maturation of the phagolysosome. In this study, we demonstrate that metabolism by C. albicans of an additional carbon source, N-acetylglucosamine (GlcNAc), facilitates neutralization of the phagosome by a novel mechanism. Catabolism of GlcNAc raised the ambient pH through release of ammonia, which is distinct from growth on carboxylic acids but similar to growth on amino acids. However, the effect of GlcNAc metabolism on pH was genetically distinct from the neutralization induced by catabolism of amino acids, as mutation of STP2 or ATO5 did not impair the effects of GlcNAc. In contrast, mutants lacking the dedicated GlcNAc transporter gene NGT1 or the enzymes responsible for catabolism of GlcNAc were defective in altering the pH of the phagosome. This correlated with reduced survival following phagocytosis and decreased ability to damage macrophages. Thus, GlcNAc metabolism represents the third genetically independent mechanism that C. albicans utilizes to combat the rapid acidification of the phagolysosome, allowing for cells to escape and propagate infection. IMPORTANCE Candida albicans is the most important medically relevant fungal pathogen, with disseminated candidiasis being the fourth most common hospital-associated bloodstream infection. Macrophages and neutrophils are innate immune cells that play a key role in host defense by phagocytosing and destroying C. albicans cells. To survive this attack by macrophages, C. albicans generates energy by utilizing alternative carbon sources that are available in the phagosome. Interestingly, metabolism of amino acids and carboxylic acids by C. albicans raises the pH of the phagosome and thereby blocks the acidification of the phagosome, which is needed to initiate antimicrobial attack. In this work, we demonstrate that metabolism of a third type of carbon source, the amino sugar GlcNAc, also induces pH neutralization and survival of C. albicans upon phagocytosis. This mechanism is genetically and physiologically distinct from the previously described mechanisms of pH neutralization, indicating that the robust metabolic plasticity of C. albicans ensures survival upon macrophage phagocytosis.


2021 ◽  
Vol 7 (2) ◽  
pp. 119 ◽  
Author(s):  
Ebrima Bojang ◽  
Harlene Ghuman ◽  
Pizga Kumwenda ◽  
Rebecca A. Hall

Candida albicans infections range from superficial to systemic and are one of the leading causes of fungus-associated nosocomial infections. The innate immune responses during these various infection types differ, suggesting that the host environment plays a key role in modulating the host–pathogen interaction. In addition, C. albicans is able to remodel its cell wall in response to environmental conditions to evade host clearance mechanisms and establish infection in niches, such as the oral and vaginal mucosa. Phagocytes play a key role in clearing C. albicans, which is primarily mediated by Pathogen Associated Molecular Pattern (PAMP)–Pattern Recognition Receptor (PRR) interactions. PRRs such as Dectin-1, DC-SIGN, and TLR2 and TLR4 interact with PAMPs such as β-glucans, N-mannan and O-mannan, respectively, to trigger the activation of innate immune cells. Innate immune cells exhibit distinct yet overlapping repertoires of PAMPs, resulting in the preferential recognition of particular Candida morphotypes by them. The role of phagocytes in the context of individual infection types also differs, with neutrophils playing a prominent role in kidney infections, and dendritic cells playing a prominent role in skin infections. In this review, we provide an overview of the key receptors involved in the detection of C. albicans and discuss the differential innate immune responses to C. albicans seen in different infection types such as vulvovaginal candidiasis (VVC) and oral candidiasis.


Sign in / Sign up

Export Citation Format

Share Document