carbon assimilation rate
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1422
Author(s):  
Juan Carlos Suárez ◽  
Cristian Gelpud ◽  
Jhon Eduar Noriega ◽  
Fausto Andrés Ortiz-Morea

The cultivation of cocoa (Theobroma cacao L.) is traditionally managed under shade because of its photosynthetic characteristics; however, its behavior can vary according to the genotype and environmental conditions where it is grown. In this sense, here, we explore the possible mechanisms of protection against radiation stress and how these mechanisms are affected by variation between cocoa genotypes. Therefore, we evaluate the effect of the radiation level (HPAR, 2100 ± 46 mol m−2 s−1; MPAR, 1150 ± 42 mol m−2 s−1; LPAR, 636 ± 40 mol m−2 s−1) on the water status and gas exchange in plants of different cocoa genotypes (CCN-51, ICS-1, ICS-95, LUKER-40 and LUKER-50), and the occurrence of photoinhibition of PSII (as a marker of photodamage), followed by a characterization of the protection mechanisms, including the dynamics of photosynthetic pigments and enzymatic and non-enzymatic antioxidant systems. We found significant changes in the specific leaf area (SLA) and the water potential of the leaf (ΨL) due to the level of radiation, affecting the maximum quantum yield of PSII (Fv/Fm), which generated dynamic photoinhibition processes (PIDyn). Cocoa genotypes showed the lowest Light-saturated maximum net carbon assimilation rate (Amax) in HPAR. Moreover, the maximum carboxylation rate (Vcmax) was negatively affected in HPAR for most cocoa genotypes, indicating less RuBisCO activity except for the ICS-95 genotype. The ICS-95 showed the highest values of Vcmax and maximum rate of regeneration of ribulose-1,5-bisphosphate (RuBP) controlled by electron transport (Jmax) under HPAR. Hence, our results show that some genotypes were acclimated to full sun conditions, which translated into greater carbon use efficiency due to the maximization of photosynthetic rates accompanied by energy dissipation mechanisms.


2021 ◽  
Author(s):  
Haruka Takagi ◽  
Tetsuichi Fujiki ◽  
Katsunori Kimoto

<p>Photosymbiosis is one of the important features in planktonic foraminifera. The number of symbiont cells within one host is reported to be well over a few thousand, which means that photosynthesis by photosymbiosis might be a “hot spot” of primary production, especially in oligotrophic oceans. Information of photosynthetic activity of symbionts is also essential when interpreting the geochemical proxies recorded in foraminiferal tests because the microenvironmental condition in the vicinity of foraminifera is greatly affected by rapid biological activities such as photosynthesis and respiration. Recently, active chlorophyll fluorometry is increasingly being used as a useful and instant tool to estimate photosynthesis. However, the carbon assimilation rate is the only direct measure of photosynthetic carbon flow. Therefore, confirming the relationship between the active fluorometry-based photosynthetic rate (electron transport rate, ETR) and carbon assimilation rate (CAR) is required before utilizing ETR to understand the dynamics of carbon in the foraminifera-symbiont system.</p><p>Here, we compared CAR and ETR for two species, <em>Trilobatus sacculifer</em> (dinoflagellate-bearing) and <em>Globigerinella siphonifera</em> Type II (pelagophyte-bearing). CAR was estimated using <sup>14</sup>C‐tracer experiment and ETR was estimated using active fluorometric measurement by fast repetition rate fluorometry.</p><p>The results showed that the CAR and ETR were correlated positively (<em>p</em> << 0.01) for both species. However, the regression slopes of the two species were largely different. The slope, representing the apparent electron requirement for carbon assimilation (e<sup>−</sup>/C), was estimated to 28.5 for<em> T. sacculifer</em> and 101.1 for <em>G. siphonifera</em>. These values were strikingly high. Theoretically, under optimal growth conditions, phototrophs’ e<sup>−</sup>/C should be 4 based on the minimum number of electrons derived from 2 water molecules to generate 1 oxygen molecule. So, we hypothesized that the observed high e<sup>−</sup>/C in the foraminifera-algal consortia is partly attributable to the utilization of unlabeled respiratory carbon (resulting in underestimation of CAR). Considering the theoretical and empirically realistic e<sup>−</sup>/C, we estimated the proportion of the carbon source for photosynthesis. The results showed that a considerable amount of carbon should be derived from the host’s respired CO<sub>2</sub>. The higher contribution of the respired CO<sub>2</sub> was suggested in <em>G. siphonifera</em> than in <em>T. sacculifer</em>.</p><p>From the viewpoint of utilizing test geochemistry such as δ<sup>13</sup>C as paleoceanographic proxies, one should beware that the potential magnitude of the photosynthetic effect can differ between species. This study suggests that in <em>G. siphonifera</em>, photosynthetic carbon incorporation from seawater is smaller, and utilization of the host-derived carbon by symbionts is more efficient, indicating that <em>G. siphonifera</em> would be less susceptible to the alteration of geochemical composition by photosynthesis and respiration. This attempt to couple the ETR and CAR could comprehensively disclose an interesting perspective of these intimate interactions in the photosymbiotic system.</p>


2020 ◽  
Author(s):  
Jaideep Joshi ◽  
Benjamin D. Stocker ◽  
Florian Hofhansl ◽  
Shuangxi Zhou ◽  
Ulf Dieckmann ◽  
...  

AbstractThe global carbon and water cycles are strongly governed by the simultaneous diffusion of CO2 and water vapour through the leaves of terrestrial plants. These diffusive fluxes are controlled by plants’ adaptations to balance carbon gains and hydraulic risks. We introduce a trait-based optimality theory that unifies the treatment of stomatal responses and biochemical acclimation of plants to changing environments. Tested with experimental data from eighteen species, our model successfully predicts the simultaneous decline in carbon assimilation rate, stomatal conductance, and photosynthetic capacity during progressive soil drought. It also correctly predicts the dependencies of gas exchange on atmospheric vapour pressure deficit, temperature, and CO2. Consistent with widely observed patterns, inferred trait values for the analysed species display a spectrum of stomatal strategies, a safety-efficiency trade-off, and a convergence towards low hydraulic safety margins. Our unifying theory opens new avenues for reliably modelling the interactive effects of drying soil and air and rising atmospheric CO2 on global photosynthesis and transpiration.


2020 ◽  
Vol 47 (3) ◽  
pp. 226
Author(s):  
Fang Wang ◽  
T. Matthew Robson ◽  
Jorge J. Casal ◽  
Alexey Shapiguzov ◽  
Pedro J. Aphalo

The UV-A/blue photoreceptors phototropins and cryptochromes are both known to contribute to stomatal opening (Δgs) in blue light. However, their relative contributions to the maintenance of gs in blue light through the whole photoperiod remain unknown. To elucidate this question, Arabidopsis phot1 phot2 and cry1 cry2 mutants (MTs) and their respective wild types (WTs) were irradiated with 200 μmolm–2s–1 of blue-, green- or red-light (BL, GL or RL) throughout a 11-h photoperiod. Stomatal conductance (gs) was higher under BL than under RL or GL. Under RL, gs was not affected by either of the photoreceptor mutations, but under GL gs was slightly lower in cry1 cry2 than its WT. Under BL, the presence of phototropins was essential for rapid stomatal opening at the beginning of the photoperiod, and maximal stomatal opening beyond 3 h of irradiation required both phototropins and cryptochromes. Time courses of whole-plant net carbon assimilation rate (Anet) and the effective quantum yield of PSII photochemistry (ΦPSII) were consistent with an Anet-independent contribution of BL on gs both in phot1 phot2 and cry1 cry2 mutants. The changing roles of phototropins and cryptochromes through the day may allow more flexible coordination between gs and Anet.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca Dall’Osto ◽  
Stefano Cazzaniga ◽  
Zeno Guardini ◽  
Simone Barera ◽  
Manuel Benedetti ◽  
...  

Abstract Background Microalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO2-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection. Results We applied two steps of mutagenesis and phenotypic selection to the microalga Chlorella vulgaris. First, a pale-green mutant (PG-14) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. PG-14 showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of PG-14, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains SOR). Growth in photobioreactors under high light conditions showed an enhanced biomass production of SOR strains with respect to PG-14. When compared to WT strain, biomass yield of the pale green + sor genotype was enhanced by 68%. Conclusions Domestication of microalgae like Chlorella vulgaris, by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor.


2019 ◽  
Vol 37 ◽  
Author(s):  
M.R. DURIGON ◽  
A.S. CAMERA ◽  
J. CECHIN ◽  
L. VARGAS ◽  
G. CHAVARRIA

ABSTRACT: Canola is an important rotation crop for the winter season and the use of atrazine-resistant hybrids can lead to an increase in yield. This work was aimed at evaluating the effect of atrazine on photochemical and biochemical processes of photosynthesis in triazine-resistant canola. The experiment was conducted in a greenhouse, with triazine-resistant hybrid Hyola® 555TT, in a randomized block design with three replications. The treatments consisted of application or no application of atrazine on canola plants. The plants were assessed at one, three, five, and eight days after application (DAA) for chlorophyll indexes, modulated chlorophyll a fluorescence and gas exchange. Chlorophyll indexes were higher in canola plants treated with atrazine. Application of atrazine caused an increase in fluorescence at steady state and a reduction in quantum efficiency of photosystem II and electron transport rate, at 1 DAA, and a reduction in photochemical quenching, at 1 and 3 DAA. Lower stomatal conductance, at 1 DAA, and higher net carbon assimilation rate, at 8 DAA, were found in plants treated with atrazine. The application of atrazine temporarily reduces electron transport between photosystems and increases chlorophyll indexes in resistant canola plants, raising the net carbon assimilation rate at eight days after application.


2018 ◽  
Vol 19 (12) ◽  
pp. 4046 ◽  
Author(s):  
Fei Ding ◽  
Qiannan Hu ◽  
Meiling Wang ◽  
Shuoxin Zhang

Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme in the Calvin–Benson cycle and has been documented to be important in carbon assimilation, growth and stress tolerance in plants. However, information on the impact of SBPase on carbon assimilation and nitrogen metabolism in tomato plants (Solanum lycopersicum) is rather limited. In the present study, we investigated the role of SBPase in carbon assimilation and nitrogen metabolism in tomato plants by knocking out SBPase gene SlSBPASE using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology. Compared with wild-type plants, slsbpase mutant plants displayed severe growth retardation. Further analyses showed that knockout of SlSBPASE led to a substantial reduction in SBPase activity and as a consequence, ribulose-1,5-bisphosphate (RuBP) regeneration and carbon assimilation rate were dramatically inhibited in slsbpase mutant plants. It was further observed that much lower levels of sucrose and starch were accumulated in slsbpase mutant plants than their wild-type counterparts during the photoperiod. Intriguingly, mutation in SlSBPASE altered nitrogen metabolism as demonstrated by changes in levels of protein and amino acids and activities of nitrogen metabolic enzymes. Collectively, our data suggest that SlSBPASE is required for optimal growth, carbon assimilation and nitrogen metabolism in tomato plants.


2014 ◽  
Vol 41 (8) ◽  
pp. 884 ◽  
Author(s):  
Sebastian Saa ◽  
Patrick H. Brown

Fruit presence often positively and seldom negatively affects leaf carbon assimilation rate in fruit-trees. In almond (Prunus dulcis (Mill.) DA Webb) the presence of fruit often results in the death of the fruit bearing spurs. The mechanism of this effect is unclear, but may be a consequence of diminished carbon assimilation rate in leaves adjacent to fruit and the subsequent depletion of nutrient and carbohydrates reserves. This study evaluated the influence of fruit on leaf carbon assimilation rate and leaf nitrogen throughout the season. Carbon assimilation rate (Aa), rubisco carboxylation capacity at leaf temperature (Vcmax@Tleaf), maximum rate of RubP regeneration at leaf temperature (Jmax@Tleaf), leaf nitrogen on a mass basis (N%) and area basis (Na), and specific leaf weight data were recorded. Fruit presence negatively affected leaf nitrogen concentration by a reduction in specific leaf weight and leaf nitrogen content. The impact of fruit presence on carbon assimilation rate was predominantly associated with the negative effect of fruit on Na and resulted in a significant reduction in Jmax@Tleaf and therefore in Aa, especially after full leaf and fruit expansion. The reduction in leaf area, leaf nitrogen, reduced Jmax@Tleaf and decreased carbon assimilation rate in the presence of fruit explains the negative effects of fruit presence on spur vitality.


Sign in / Sign up

Export Citation Format

Share Document