scholarly journals Transmissible Gastroenteritis Virus Infection Up-Regulates FcRn Expression via Nucleocapsid Protein and Secretion of TGF-β in Porcine Intestinal Epithelial Cells

2020 ◽  
Vol 10 ◽  
Author(s):  
Shaoju Qian ◽  
Zitong Gao ◽  
Rui Cao ◽  
Kang Yang ◽  
Yijie Cui ◽  
...  
2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Xiaoqing Wang ◽  
Weiwei Hu ◽  
Liqi Zhu ◽  
Qian Yang

Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Lu Xia ◽  
Lei Dai ◽  
Qinghua Yu ◽  
Qian Yang

ABSTRACT Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed that persistent TGEV infection induces an EMT in porcine intestinal columnar epithelial cells (IPEC-J2) and enhances the adhesion of the secondary pathogen ETEC K88. Additional experiments suggest that integrin α5 and fibronectin play an important role in TGEV-enhanced ETEC K88 adhesion. Reversal of EMT reduces the expression of integrin α5 and fibronectin and also reduces ETEC K88 adhesion. We conclude that TGEV infection triggers EMT and facilitates dual infection. Our results provide new insights into secondary infection and suggest that targeted anti-EMT therapy may have implications for the prevention and treatment of secondary infection.


2019 ◽  
Author(s):  
Xuelian Ma ◽  
Xiaomin Zhao ◽  
Kaili Wang ◽  
Xiaoyi Tang ◽  
Jianxiong Guo ◽  
...  

Abstract Abstract Background: Transmissible gastroenteritis virus (TGEV) infection can cause acute inflammation. Long noncoding RNAs (lncRNAs) play important roles in a number of biological process including inflammation response. However, whether lncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells (IPECs) is largely unknown. Results: In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in Mock and TGEV-infected porcine intestinal epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 106 lncRNAs were differentially expressed. Many differentially expressed lncRNAs act as elements to competitively attach microRNAs (miRNAs) which target to messenger RNA (mRNAs ) to mediate expression of genes that related to Toll-like receptors (TLRs), NOD-like receptors (NLRs), Tumor necrosis factor (TNF), and RIG-I-like receptor s (RLRs) pathways. Functional analysis of the binding proteins and the up/down-stream genes of the differentially expressed lncRNAs revealed that lncRNAs were principally related to inflammatory response. Meanwhile, we found that the differentially expressed lncRNA TCONS_00058367 might lead to a reduction of phosphorylation of transcription factor p65 (p-p65) in TGEV-infected IPEC-J2 cells by negatively regulating its antisense gene romyelocytic leukemia (PML ). Conclusions: The data showed that differentially expressed lncRNAs might be involved in inflammatory response induced by TGEV through acting as miRNA sponges, regulating their up/down-stream genes, or directly binding proteins.


Virology ◽  
2017 ◽  
Vol 507 ◽  
pp. 170-178 ◽  
Author(s):  
Zhen Ding ◽  
Kang An ◽  
Lilan Xie ◽  
Wei Wu ◽  
Ruoxi Zhang ◽  
...  

2019 ◽  
Author(s):  
Xuelian Ma ◽  
Xiaomin Zhao ◽  
Kaili Wang ◽  
Xiaoyi Tang ◽  
Jianxiong Guo ◽  
...  

Abstract Abstract Background: Transmissible gastroenteritis virus (TGEV) infection can activate the immune response and cause inflammation. Long noncoding RNAs (lncRNAs) play important roles in antiviral innate immune response. However, whether lncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells (IPECs) is largely unknown. Results: In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in Mock and TGEV-infected porcine intestinal epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 106 lncRNAs were differentially expressed. Many differentially expressed lncRNAs act as elements to competitively attach miRNAs with mRNAs to mediate expression of genes that related to Toll-like receptor, NOD-like receptor, TNF, and RIG-I-like receptor pathways. Functional analysis of the binding proteins and the up/down-stream genes of the differentially expressed lncRNAs revealed that lncRNAs were principally related to immune response. Meanwhile, we found that the differentially expressed lncRNA TCONS_00058367 might lead to a reduction of p-p65 in TGEV-infected IPEC-J2 cells by negatively regulating its antisense gene PML. Conclusions: The data showed that differentially expressed lncRNAs might be involved in immune response induced by TGEV through acting as miRNA sponges, regulating their up/down-stream genes, or directly binding proteins.


Sign in / Sign up

Export Citation Format

Share Document