scholarly journals Response Characteristics of Nitrifying Bacteria and Archaea Community Involved in Nitrogen Removal and Bioelectricity Generation in Integrated Tidal Flow Constructed Wetland-Microbial Fuel Cell

2020 ◽  
Vol 11 ◽  
Author(s):  
Longmian Wang ◽  
Qingqing Pang ◽  
Fuquan Peng ◽  
Aiguo Zhang ◽  
Ying Zhou ◽  
...  
2020 ◽  
Vol 264 ◽  
pp. 121580 ◽  
Author(s):  
Longmian Wang ◽  
Ying Zhou ◽  
Fuquan Peng ◽  
Aiguo Zhang ◽  
Qingqing Pang ◽  
...  

2018 ◽  
Vol 78 (9) ◽  
pp. 1990-1996 ◽  
Author(s):  
Dengming Yan ◽  
Xinshan Song ◽  
Baisha Weng ◽  
Zhilei Yu ◽  
Wuxia Bi ◽  
...  

Abstract The aim of this study was to investigate the different performance of bioelectricity generation and wastewater treatment between constructed wetland (CW) respectively coupled with air-cathode microbial fuel cell (ACMFC) and microbial fuel cell (MFC) under a fed-batch mode. During a 75-day-operation, the voltage of CW-ACMFC and CW-MFC ranged from 0.36 to 0.52 V and from −0.04 to 0.07 V, indicating that the bioenergy output of CW-ACMFC was significantly higher than that of CW-MFC system. In addition, the maximum of power density of CW-ACMFC and CW-MFC was 4.21 and 0.005 mW m−2. Notably, the chemical oxygen demand (COD) and NH3-N removal efficiency of CW-ACMFC was slightly higher than that in CW-MFC, which resulted from a higher voltage accelerating the transport of electron donors and the growth of microorganisms and plants. This study possesses a probability of using ACMFC coupled with CW to enhance the pollutant removal performance in CW system.


Sign in / Sign up

Export Citation Format

Share Document