scholarly journals Definition of a High-Resolution Molecular Marker for Tracking the Genetic Diversity of the Harmful Algal Species Eucampia zodiacus Through Comparative Analysis of Mitochondrial Genomes

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengjia Zhang ◽  
Zongmei Cui ◽  
Feng Liu ◽  
Nansheng Chen

The cosmopolitan phytoplankton species Eucampia zodiacus is a common harmful algal bloom (HAB) species that have been found to cause HABs in essentially all coastal regions except the Polar regions. However, molecular information for this HAB species is limited with only a few molecular markers. In this project, we constructed the mitochondrial genome (mtDNA) of E. zodiacus, which was also the first mtDNA constructed for any species in the order Hemiaulales that includes 145 reported species (including two additional HAB species Cerataulina bicornis and Cerataulina pelagica). Comparative analysis of eight E. zodiacus strains revealed that they could not be distinguished using common molecular markers, suggesting that common molecular markers do not have adequate resolution for distinguishing E. zodiacus strains. However, these E. zodiacus strains could be distinguished using whole mtDNAs, suggesting the presence of different genotypes due to evolutionary divergence. Through comparative analysis of the mtDNAs of multiple E. zodiacus strains, we identified a new molecular marker ezmt1 that could adequately distinguish different E. zodiacus strains isolated in various coastal regions in China. This molecular marker ezmt1, which was ∼400 bp in size, could be applied to identify causative genotypes during E. zodiacus HABs through tracking the dynamic changes of genetic diversity of E. zodiacus in HABs.

Hereditas ◽  
2011 ◽  
Vol 148 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Toan Duc Pham ◽  
Mulatu Geleta ◽  
Tri Minh Bui ◽  
Tuyen Cach Bui ◽  
Arnulf Merker ◽  
...  

Author(s):  
Qing Xu ◽  
Chunzhi Wang ◽  
Kuidong Xu ◽  
Nansheng Chen

The Western Pacific is the most oligotrophic sea on Earth, with numerous seamounts. However, the plankton diversity and biogeography of the Western Pacific in general and the seamount regions in particular remains largely unexplored. In this project, we quantitatively analyzed the composition and distribution patterns of plankton species in the Western Pacific seamount regions by applying metabarcoding analysis. We identified 4601 amplicon sequence variants (ASVs) representing 34 classes in seven protist phyla/divisions in the Western Pacific seamount regions, among which Dinoflagellata was by far the most dominant division. Among the 336 annotated phytoplankton species (including species in Dinoflagellata), we identified 36 harmful algal bloom (HAB) species, many of which displayed unique spatial distribution patterns in the Western Pacific seamount regions. This study was the first attempt in applying ASV-based metabarcoding analysis in studying phytoplankton and HAB species in the Western Pacific seamount regions, which may facilitate further research on the potential correlation between HABs in the Western Pacific seamount regions and coastal regions.


2006 ◽  
Vol 2 (2) ◽  
pp. 194-197 ◽  
Author(s):  
Aditee Mitra ◽  
Kevin J Flynn

The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator–prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator–prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator–prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
K Shinde ◽  
V Shinde ◽  
J Kurane ◽  
A Harsulkar ◽  
K Mahadik

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492f-493
Author(s):  
Roberto F. Vieira ◽  
James E. Simon ◽  
Peter Goldsbrough ◽  
Antonio Figueira

Essential oils extracted from basil (Ocimum spp.) by steam distillation are used to flavor foods, oral products, in fragrances, and in traditional medicines. The genus Ocimum contains around 30 species native to the tropics and subtropics, with some species naturalized and/or cultivated in temperate areas. Interand intraspecific hybridization have created significant confusion in the botanical systematics of this genus. Taxonomy of basil (O. basilicum) is also complicated by the existence of numerous varieties, cultivars, and chemotypes within the species that do not differ significantly in morphology. In this study we are using RAPD markers and volatile oil composition to characterize the genetic diversity among the most economically important Ocimum species. We hypothesize that the genetic similarity revealed by molecular markers will more accurately reflect the morphological and chemical differences in Ocimum than essential oil composition per se. Preliminary research using five Ocimum species, four undetermined species, and eight varieties of O. basilicum (a total of 19 accessions) generated 107 polymorphic fragments amplified with 19 primers. RAPDs are able to discriminate between Ocimum species, but show a high degree of similarity between O. basilicum varieties. The genetic distance between nine species and among 55 accessions within the species O. americanum, O. basilicum, O. campechianum, O. × citriodorum, O. gratissimum, O. kilimandscharium, O. minimum, O. selloi, and O. tenuiflorum will be analyzed by matrix of similarity and compared to the volatile oil profile. This research will for the first time apply molecular markers to characterize the genetic diversity of Ocimum associate with volatile oil constituent.


Sign in / Sign up

Export Citation Format

Share Document