hab species
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Qing Xu ◽  
Chunzhi Wang ◽  
Kuidong Xu ◽  
Nansheng Chen

The Western Pacific is the most oligotrophic sea on Earth, with numerous seamounts. However, the plankton diversity and biogeography of the Western Pacific in general and the seamount regions in particular remains largely unexplored. In this project, we quantitatively analyzed the composition and distribution patterns of plankton species in the Western Pacific seamount regions by applying metabarcoding analysis. We identified 4601 amplicon sequence variants (ASVs) representing 34 classes in seven protist phyla/divisions in the Western Pacific seamount regions, among which Dinoflagellata was by far the most dominant division. Among the 336 annotated phytoplankton species (including species in Dinoflagellata), we identified 36 harmful algal bloom (HAB) species, many of which displayed unique spatial distribution patterns in the Western Pacific seamount regions. This study was the first attempt in applying ASV-based metabarcoding analysis in studying phytoplankton and HAB species in the Western Pacific seamount regions, which may facilitate further research on the potential correlation between HABs in the Western Pacific seamount regions and coastal regions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cynthia Ann Heil ◽  
Amanda Lorraine Muni-Morgan

Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengjia Zhang ◽  
Zongmei Cui ◽  
Feng Liu ◽  
Nansheng Chen

The cosmopolitan phytoplankton species Eucampia zodiacus is a common harmful algal bloom (HAB) species that have been found to cause HABs in essentially all coastal regions except the Polar regions. However, molecular information for this HAB species is limited with only a few molecular markers. In this project, we constructed the mitochondrial genome (mtDNA) of E. zodiacus, which was also the first mtDNA constructed for any species in the order Hemiaulales that includes 145 reported species (including two additional HAB species Cerataulina bicornis and Cerataulina pelagica). Comparative analysis of eight E. zodiacus strains revealed that they could not be distinguished using common molecular markers, suggesting that common molecular markers do not have adequate resolution for distinguishing E. zodiacus strains. However, these E. zodiacus strains could be distinguished using whole mtDNAs, suggesting the presence of different genotypes due to evolutionary divergence. Through comparative analysis of the mtDNAs of multiple E. zodiacus strains, we identified a new molecular marker ezmt1 that could adequately distinguish different E. zodiacus strains isolated in various coastal regions in China. This molecular marker ezmt1, which was ∼400 bp in size, could be applied to identify causative genotypes during E. zodiacus HABs through tracking the dynamic changes of genetic diversity of E. zodiacus in HABs.


2020 ◽  
Vol 10 (16) ◽  
pp. 5658
Author(s):  
Nobuharu Inaba ◽  
Isamu Kodama ◽  
Satoshi Nagai ◽  
Tomotaka Shiraishi ◽  
Kohei Matsuno ◽  
...  

The intensity and frequency of harmful algal blooms (HABs) have increased, posing a threat to human seafood resources due to massive kills of cultured fish and toxin contamination of bivalves. In recent years, bacteria that inhibit the growth of HAB species were found to be densely populated on the biofilms of some macroalgal species, indicating the possible biological control of HABs by the artificial introduction of macroalgal beds. In this study, an artificially created Ulva pertusa bed using mobile floating cages and a natural macroalgal bed were studied to elucidate the distribution of algal growth-limiting bacteria (GLB). The density of GLB affecting fish-killing raphidophyte Chattonella antiqua, and two harmful dinoflagellates, were detected between 106 and 107 CFU g−1 wet weight on the biofilm of artificially introduced U. pertusa and 10 to 102 CFU mL−1 from adjacent seawater; however, GLB found from natural macroalgal species targeted all tested HAB species (five species), ranging between 105 and 106 CFU g−1 wet weight in density. These findings provide new ecological insights of GLB at macroalgal beds, and concurrently demonstrate the possible biological control of HABs by artificially introduced Ulva beds.


Harmful Algae ◽  
2019 ◽  
Vol 87 ◽  
pp. 101631 ◽  
Author(s):  
Sirje Sildever ◽  
Yoko Kawakami ◽  
Nanako Kanno ◽  
Hiromi Kasai ◽  
Akihiro Shiomoto ◽  
...  

2019 ◽  
Vol 70 (6) ◽  
pp. 794 ◽  
Author(s):  
Jin Ho Kim ◽  
Minji Lee ◽  
Young Kyun Lim ◽  
Yun Ji Kim ◽  
Seung Ho Baek

Because the phytoplankton community and blooms are regulated by various environmental factors, it is difficult to define the cause and occurrence of the phenomenon of harmful algal blooms (HABs). This study evaluated the phytoplankton community and occurrence characteristic of HAB species related to coastal environments in South Korea, 2016. In summer, because of strong upwelling event, the surface sweater temperature around Geoje Island was abnormally low (17°C), and an unusual high temperature (29°C) and low salinity (29psu) were measured in offshore area. Diatoms and dinoflagellates showed contrasting occurrences during the survey period. Diatoms were dominant in the inshore area, whereas dinoflagellates occurred in the offshore area. The phytoplankton-community structures were established depending on different hydro-oceanographic characteristics. In statistical analysis, HABs of dinoflagellate Karenia appeared in upwelling areas with a high nutritional content, whereas Gymnodinium, Gyrodinium and Prorocentrum appeared in areas of low nutrients in June, and HAB species showed an equivalent tendency to appear at high water temperature and low saline level in August. Our results indicated that hydro-oceanographic events such as river discharge, current and upwelling play important roles in determining the phytoplankton community and potential occurrence characteristics of HABs in the coastal environment of South Korea.


Sign in / Sign up

Export Citation Format

Share Document