scholarly journals Aboveground and Belowground Plant Traits Explain Latitudinal Patterns in Topsoil Fungal Communities From Tropical to Cold Temperate Forests

2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Teng ◽  
Jing Tian ◽  
Romain Barnard ◽  
Guirui Yu ◽  
Yakov Kuzyakov ◽  
...  

Soil fungi predominate the forest topsoil microbial biomass and participate in biogeochemical cycling as decomposers, symbionts, and pathogens. They are intimately associated with plants but their interactions with aboveground and belowground plant traits are unclear. Here, we evaluated soil fungal communities and their relationships with leaf and root traits in nine forest ecosystems ranging from tropical to cold temperate along a 3,700-km transect in eastern China. Basidiomycota was the most abundant phylum, followed by Ascomycota, Zygomycota, Glomeromycota, and Chytridiomycota. There was no latitudinal trend in total, saprotrophic, and pathotrophic fungal richness. However, ectomycorrhizal fungal abundance and richness increased with latitude significantly and reached maxima in temperate forests. Saprotrophic and pathotrophic fungi were most abundant in tropical and subtropical forests and their abundance decreased with latitude. Spatial and climatic factors, soil properties, and plant traits collectively explained 45% of the variance in soil fungal richness. Specific root length and root biomass had the greatest direct effects on total fungal richness. Specific root length was the key determinant of saprotrophic and pathotrophic fungal richness while root phosphorus content was the main biotic factor determining ectomycorrhizal fungal richness. In contrast, spatial and climatic features, soil properties, total leaf nitrogen and phosphorus, specific root length, and root biomass collectively explained >60% of the variance in fungal community composition. Soil fungal richness and composition are strongly controlled by both aboveground and belowground plant traits. The findings of this study provide new evidence that plant traits predict soil fungal diversity distribution at the continental scale.

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2020 ◽  
Vol 453 (1-2) ◽  
pp. 515-528 ◽  
Author(s):  
Amit Kumar ◽  
Richard van Duijnen ◽  
Benjamin M. Delory ◽  
Rüdiger Reichel ◽  
Nicolas Brüggemann ◽  
...  

Abstract Aims Root system responses to the limitation of either nitrogen (N) or phosphorus (P) are well documented, but how the early root system responds to (co-) limitation of one (N or P) or both in a stoichiometric framework is not well-known. In addition, how intraspecific competition alters plant responses to N:P stoichiometry is understudied. Therefore, we aimed to investigate the effects of N:P stoichiometry and competition on root system responses and overall plant performance. Methods Plants (Hordeum vulgare L.) were grown in rhizoboxes for 24 days in the presence or absence of competition (three vs. one plant per rhizobox), and fertilized with different combinations of N:P (low N + low P, low N + high P, high N + low P, and high N + high P). Results Shoot biomass was highest when both N and P were provided in high amounts. In competition, shoot biomass decreased on average by 22%. Total root biomass (per plant) was not affected by N:P stoichiometry and competition but differences were observed in specific root length and root biomass allocation across soil depths. Specific root length depended on the identity of limiting nutrient (N or P) and competition. Plants had higher proportion of root biomass in deeper soil layers under N limitation, while a greater proportion of root biomass was found at the top soil layers under P limitation. Conclusions With low N and P availability during early growth, higher investments in root system development can significantly trade off with aboveground productivity, and strong intraspecific competition can further strengthen such effects.


HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1579-1585 ◽  
Author(s):  
David Jespersen ◽  
Brian Schwartz

Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (gS)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.


1996 ◽  
Vol 12 (6) ◽  
pp. 871-885 ◽  
Author(s):  
Michael S. Hopkins ◽  
Paul Reddell ◽  
Robert K. Hewett ◽  
Andrew W. Graham

ABSTRACTRoot biomass, root lengths, and mycorrhizal associations were compared in a series of primary and Acacia-dominated secondary rainforest stands on nutrient-poor, red podzolic soils developed from low grade Palaeozoic metasediments. Five soil cores to 200 mm depth were collected at random locations from each of 20 sites. Ten of these sites were in 20–25 m high closed secondary forest (30–40 y old) dominated by Acacia aulacocarpa and ten sites were located in primary, selectively-logged, rainforest (28–32 m tall). Arbuscular mycorrhizas were the only form of association found in the primary forest sites. Ectomycorrhizas dominated the secondary forest sites although arbuscular mycorrhizas were also present. The primary forest sites had significantly higher root biomass (34.4 ± 17.8 t ha-1) and root length (33,400 ± 3,200 km ha-1) than the secondary forests (11.6 ± 4.6 t ha-1 and 25,200 ± 4,800 km ha-1 respectively), and this was interpreted as a reflection of the greater allocation of biomass to roots necessary to support the greater above ground biomass. The specific root length in the secondary forest (340 ± 119 cm g-1) was twice that of the primary forest (154 ± 65 cm g-1) indicating that the trees in the secondary forests achieved a degree of soil exploration which was comparable to that in the primary forest with less than half the biomass allocation to roots. The dominance of ectomycorrhizas in the secondary forest was associated with the prevalence of Acacia aulacocarpa, and the results cannot be extended to other secondary forests in the region. The implications that the dominant ectomycorrhizal associations have for the patterns of successional development and the patterns of species colonization in these Acaria-dominated secondary forests are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Affendy Hassan ◽  
Parveena Balachandran ◽  
Khairiyyah R. Khamis

Macropropagation using cutting for larger multiplying seedlings is cheaper and efficient instead of clonal seeds for uniform plant material seedling production. However, information on root growth of Eucalyptus pellita at early development from seed and stem cutting of E. pellita seedlings is still lacking. With such information, it is useful for forest plantation company management in enhancing the understanding of strategies to optimize yield production with the appropriate agronomic or silvicultural approach in the field of planting. Therefore, the objectives of this study were to compare the root development of two different types of propagation seedlings of E. pellita and to study the effect of various nitrogen concentration levels on two different types of propagation of E. pellita seedlings. The study was conducted using E. pellita seedlings from two different types of propagation, namely, seed and stem cuttings, along with three different nitrogen concentrations (0, 50, and 200 kg N ha−1). Shoot biomass, root intensity (RI), total root intensity (TRI), root biomass, root length density (RLD), and specific root length (SRL) were recorded. Dried shoot biomass, RLD, and SRL of E. pellita seedlings using stem cutting were significantly higher ( P < 0.05 ) compared to seed, whereas there were no significant differences ( P > 0.05 ) for root biomass, TRI, and RI between the propagation types of E. pellita seedlings. In conclusion, E. pellita seedlings from stem cutting were greater in terms of root distribution compared to propagation by seeds at the nursery stage, and 50 kg N ha−1 was the optimal nitrogen concentration level from the considered levels to be applied to the E. pellita seedlings.


mSystems ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Bin Ma ◽  
Zhongmin Dai ◽  
Haizhen Wang ◽  
Melissa Dsouza ◽  
Xingmei Liu ◽  
...  

ABSTRACT Understanding biogeographic patterns is a precursor to improving our knowledge of the function of microbiomes and to predicting ecosystem responses to environmental change. Using natural forest soil samples from 110 locations, this study is one of the largest attempts to comprehensively understand the different patterns of soil archaeal, bacterial, and fungal biogeography at the continental scale in eastern China. These patterns in natural forest sites could ascertain reliable soil microbial biogeographic patterns by eliminating anthropogenic influences. This information provides guidelines for monitoring the belowground ecosystem’s decline and restoration. Meanwhile, the deviations in the soil microbial communities from corresponding natural forest states indicate the extent of degradation of the soil ecosystem. Moreover, given the association between vegetation type and the microbial community, this information could be used to predict the long-term response of the underground ecosystem to the vegetation distribution caused by global climate change. The natural forest ecosystem in Eastern China, from tropical forest to boreal forest, has declined due to cropland development during the last 300 years, yet little is known about the historical biogeographic patterns and driving processes for the major domains of microorganisms along this continental-scale natural vegetation gradient. We predicted the biogeographic patterns of soil archaeal, bacterial, and fungal communities across 110 natural forest sites along a transect across four vegetation zones in Eastern China. The distance decay relationships demonstrated the distinct biogeographic patterns of archaeal, bacterial, and fungal communities. While historical processes mainly influenced bacterial community variations, spatially autocorrelated environmental variables mainly influenced the fungal community. Archaea did not display a distance decay pattern along the vegetation gradient. Bacterial community diversity and structure were correlated with the ratio of acid oxalate-soluble Fe to free Fe oxides (Feo/Fed ratio). Fungal community diversity and structure were influenced by dissolved organic carbon (DOC) and free aluminum (Ald), respectively. The role of these environmental variables was confirmed by the correlations between dominant operational taxonomic units (OTUs) and edaphic variables. However, most of the dominant OTUs were not correlated with the major driving variables for the entire communities. These results demonstrate that soil archaea, bacteria, and fungi have different biogeographic patterns and driving processes along this continental-scale natural vegetation gradient, implying different community assembly mechanisms and ecological functions for archaea, bacteria, and fungi in soil ecosystems. IMPORTANCE Understanding biogeographic patterns is a precursor to improving our knowledge of the function of microbiomes and to predicting ecosystem responses to environmental change. Using natural forest soil samples from 110 locations, this study is one of the largest attempts to comprehensively understand the different patterns of soil archaeal, bacterial, and fungal biogeography at the continental scale in eastern China. These patterns in natural forest sites could ascertain reliable soil microbial biogeographic patterns by eliminating anthropogenic influences. This information provides guidelines for monitoring the belowground ecosystem’s decline and restoration. Meanwhile, the deviations in the soil microbial communities from corresponding natural forest states indicate the extent of degradation of the soil ecosystem. Moreover, given the association between vegetation type and the microbial community, this information could be used to predict the long-term response of the underground ecosystem to the vegetation distribution caused by global climate change. Author Video: An author video summary of this article is available.


2021 ◽  
Author(s):  
Xiucheng Liu ◽  
Yuting Wang ◽  
Shuangri Liu ◽  
Miao Liu

Abstract Aims Phosphorus (P) availability and efficiency are especially important for plant growth and productivity. However, the sex-specific P acquisition and utilization strategies of dioecious plant species under different N forms are not clear. Methods This study investigated the responsive mechanisms of dioecious Populus cathayana females and males based on P uptake and allocation to soil P supply under N deficiency, nitrate (NO3 −) and ammonium (NH4 +) supply. Important Findings Females had a greater biomass, root length density (RLD), specific root length (SRL) and shoot P concentration than males under normal P availability with two N supplies. NH4 + supply led to higher total root length, RLD and SRL but lower root tip number than NO3 − supply under normal P supply. Under P deficiency, males showed a smaller root system but greater photosynthetic P availability and higher leaf P remobilization, exhibiting a better capacity to adaptation to P-deficiency than females. Under P deficiency, NO3 − supply increased leaf photosynthesis and PUE but reduced RLD and SRL in females while males had higher leaf P redistribution and photosynthetic PUE than NH4 + supply. Females had a better potentiality to cope with P deficiency under NO3 − supply than NH4 + supply; the contrary was true for males. These results suggest that females may devote to increase in P uptake and shoot P allocation under normal P availability, especially under NO3 − supply, while males adopt more efficient resource use and P remobilization to maximum their tolerance to P-deficiency.


Euphytica ◽  
2004 ◽  
Vol 137 (2) ◽  
pp. 243-249 ◽  
Author(s):  
Anne-Kristin Løes ◽  
Tara S. Gahoonia

Sign in / Sign up

Export Citation Format

Share Document