Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

2006 ◽  
Vol 1 (3) ◽  
pp. 310-317 ◽  
Author(s):  
Yunhuan Cheng ◽  
Youzhi Han ◽  
Qingcheng Wang ◽  
Zhengquan Wang
2009 ◽  
Vol 55 (No. 11) ◽  
pp. 502-510 ◽  
Author(s):  
P. Jaloviar ◽  
L. Bakošová ◽  
S. Kucbel ◽  
J. Vencurik

The fine root biomass represents 3,372 kg/ha in the intermediate stage of the beech virgin forest with different admixture of goat willow, where the vast majority of this biomass is located in the uppermost mineral soil layer 0–10 cm. The variability of the fine root biomass calculated from 35 sample points represents approximately 90% of the mean value and reaches the highest value within the humus layer. The total fine root length investigated in 10 cm thick soil layers decreases with increasing soil depth. A significant linear relationship between the fine root length (calculated per 1 cm thick soil layer and 1 m<sup>2</sup> of stand area) and the soil depth was confirmed, although the correlation is rather weak. The number of root tips decreases with increasing soil depth faster than the root length. As the number of tips per 1 cm of root length remains in the finest diameter class without significant changes, the reason is above all a decreased proportion of the finest root class (diameter up to 0.5 mm) from the total fine root length within the particular soil layer.


2020 ◽  
Vol 33 (2) ◽  
pp. 458-469
Author(s):  
EUNICE MAIA DE ANDRADE ◽  
GILBERTO QUEVEDO ROSA ◽  
ALDENIA MENDES MASCENA DE ALMEIDA ◽  
ANTONIO GIVANILSON RODRIGUES DA SILVA ◽  
MARIA GINA TORRES SENA

ABSTRACT Seasonally dry tropical forests (SDTF) usually present dry seasons of eight or more months. Considering the concerns about the resilience of SDTF to climate changes, the objective of this study was to evaluate the effect of the rainfall regime on fine root growth in a SDTF. The experiment started at the end of the wet season (July 2015), when fine roots were evaluated and ingrowth cores were implemented. The temporal growth of fine roots in the 0-30 cm soil layer was monitored, considering the 0-10, 10-20, and 20-30 cm sublayers, through six samplings from November 2015 to July 2017. The characteristics evaluated were fine root biomass, fine root length, fine root specific length, and fine root mean diameter. The significances of the root growths over time and space were tested by the Kruskal-Wallis test (p<0.05). Fine roots (Ø<2 mm) were separated and dried in an oven (65 °C) until constant weight. The root length was determined using the Giaroots software. The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. Fine root growth occurs predominantly in rainy seasons, with fast response of the root system to rainfall events, mainly in root length.


2015 ◽  
Vol 24 (1) ◽  
pp. 012 ◽  
Author(s):  
Yinghu Zhang ◽  
Jianzhi Niu ◽  
Xinxiao Yu ◽  
Weili Zhu ◽  
Xiaoqing Du

HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1579-1585 ◽  
Author(s):  
David Jespersen ◽  
Brian Schwartz

Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (gS)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.


1998 ◽  
Vol 46 (2) ◽  
pp. 209-222 ◽  
Author(s):  
M.R. Bakker

A liming experiment was initiated in 1988 in which an equivalent dose of 1.6 t/ha CaO was applied to a young and an old stand of Q. robur (planted in 1980 and 19953, respectively), growing on acidic sandy soils in southeast Netherlands. Seven years after the liming treatments, the effects on soil and roots were intensively studied. Prior to liming, the young stand suffered from a deficiency in N, P, Mg, Zn and Fe, whereas the older stand had a deficiency in Mg and Zn. The results indicated that, 7 years after the application of lime, cation availability and soil pH were increased. Liming increased specific root length and number of apices with mycorrhizas per cm of fine root length in most of the profile in the young stand, but stimulated fine root biomass and length only in the top soil of the old stand. The leaf nutrient status was improved the most in the youngest stand, where lime had greatest impact on the area of soil exploited by the root and mycorrhizas system.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 351
Author(s):  
Xiangjun Li ◽  
Yu Su ◽  
Haifeng Yin ◽  
Size Liu ◽  
Gang Chen ◽  
...  

Pinus massoniana is an important tree species for wind protection and timber forests in Southern China. In recent years, P. massoniana plantations have been developed on more than 11,300,000 hm2 in southern China, but numerous problems have been observed, such as soil degradation, biodiversity reduction, and ecological functional decline. Crop tree management impacts on fine root development, which can be explained by the variations in the root orders. In this study, a 36-year-old P. massoniana plantation located in Huaying, Sichuan Province, was selected as the research field. In 2015, crop tree management was initiated, with a crop tree intensity of 150 trees per hectare. After 3 years of growth, fine roots of crop and noncrop trees were collected by the sector method with an angle of 15 degrees and a radius of 2 meters. We analyzed the morphological characteristics and biomass in different root orders, and explored their carbon and nitrogen contents. The results were as follows: (1) The specific root length (SRL), root length density (RLD), and surface root area (SRA) of the crop trees were larger than those of the noncrop trees; the SRL increased significantly from 0–0.5 m to 1–1.5 m from the stem. (2) The fine root biomass of the crop trees was significantly larger than that of the noncrop trees. The fine root biomass of the crop and the noncrop trees increased with the horizontal distance from the stem from 0–0.5 m to 1–1.5 m. The morphological indexes of the noncrop trees at the distances of 1–1.5 m and 1.5–2 m were significantly different, while those of the crop trees at those distances were not. (3) The fine root C content of the crop trees was significantly higher than that of the noncrop trees and varied significantly along a vertical distribution. The fine root N content of the crop trees was significantly higher than that of the noncrop trees, and the N content of topsoil was higher than that of deeper soil. In conclusion, our results indicated that crop tree management increased the production of a large-diameter wood of P. massoniana, which might be attributed to the improvement of soil permeability and nutrient stock, and thus, the enhancement of fine root quantity and water/nutrient absorption ability.


1993 ◽  
Vol 23 (12) ◽  
pp. 2507-2520 ◽  
Author(s):  
Ronald L. Hendrick ◽  
Kurt S. Pregitzer

The dynamics of fine (<2.0 mm) roots were measured in two sugar maple (Acersaccharum Marsh.) dominated ecosystems (northern and southern sites) during 1989 and 1990 using a combination of minirhizotrons and destructive harvests of fine root biomass and N content. Greater than 50% of annual length production occurred before midsummer in both ecosystems, while the period of greatest mortality was from late summer through winter. About one third of annual fine root production and mortality occur simultaneously, with little observable change in total root length pools. Using fine root length dynamics to derive biomass production and mortality, we calculated annual biomass production values of approximately 8000 and 7300 kg•ha−1•year−1, respectively, at the southern and northern sites. Corresponding biomass mortality (i.e., turnover) values were 6700 and 4800 kg•ha−1•year−1, and total nitrogen returns to the soil from fine root mortality were 72 kg•ha−1•year−1 at the southern site and 54 kg•ha−1•year−1 at the northern site. Fine roots dominated total biomass and N litter inputs to the soil in both ecosystems, accounting for over 55% of total biomass and nearly 50% of total N returns. In both ecosystems, roots <0.5 mm comprised the bulk of fine root biomass and N pools, and the contribution of these roots to northern hardwood ecosystem carbon and nitrogen budgets may have been underestimated in the past.


Sign in / Sign up

Export Citation Format

Share Document