scholarly journals Early Root Development of Eucalyptus pellita F. Muell. Seedlings from Seed and Stem Cutting Propagation Methods at Nursery Stage

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Affendy Hassan ◽  
Parveena Balachandran ◽  
Khairiyyah R. Khamis

Macropropagation using cutting for larger multiplying seedlings is cheaper and efficient instead of clonal seeds for uniform plant material seedling production. However, information on root growth of Eucalyptus pellita at early development from seed and stem cutting of E. pellita seedlings is still lacking. With such information, it is useful for forest plantation company management in enhancing the understanding of strategies to optimize yield production with the appropriate agronomic or silvicultural approach in the field of planting. Therefore, the objectives of this study were to compare the root development of two different types of propagation seedlings of E. pellita and to study the effect of various nitrogen concentration levels on two different types of propagation of E. pellita seedlings. The study was conducted using E. pellita seedlings from two different types of propagation, namely, seed and stem cuttings, along with three different nitrogen concentrations (0, 50, and 200 kg N ha−1). Shoot biomass, root intensity (RI), total root intensity (TRI), root biomass, root length density (RLD), and specific root length (SRL) were recorded. Dried shoot biomass, RLD, and SRL of E. pellita seedlings using stem cutting were significantly higher ( P < 0.05 ) compared to seed, whereas there were no significant differences ( P > 0.05 ) for root biomass, TRI, and RI between the propagation types of E. pellita seedlings. In conclusion, E. pellita seedlings from stem cutting were greater in terms of root distribution compared to propagation by seeds at the nursery stage, and 50 kg N ha−1 was the optimal nitrogen concentration level from the considered levels to be applied to the E. pellita seedlings.

2020 ◽  
Author(s):  
Affendy Hassan ◽  
Parveena Balachandran ◽  
Khairiyyah Razanah Khamis

Abstract BackgroundEucalyptus is among the important fast-growing species, and is typically managed on short rotation to sustain the production of timber, pulpwood, charcoal, and fire-wood. Macro-propagation using cutting for larger multiplying seedlings is cheaper and efficient instead of clonal seeds for uniform plant material seedling production. However, information on root growth of Eucalyptus pellita at early development from seed and stem cutting of E. pellita seedlings is still lacking. This is probably due to the difficulty in investigation belowground, and also due to methodological problems. With such information, it is useful for forest plantation company management in enhancing the understanding on strategies to optimize yield production with the appropriate agronomic or silvicultural approach in the field planting. Therefore, the objectives of this study were; to compare the root development of two different propagation seedlings of E. pellita; and to study the effect of various nitrogen concentration levels on two types of propagation of E. pellita seedlings. ResultsThe study was conducted using E. pellita seedlings from two types of propagation, namely, seed and stem cuttings, along with three different nitrogen concentrations (0, 50, and 200 kg N ha-1). Shoot biomass, root intensity (RI), total root intensity (TRI), root biomass, root length density (RLD), and specific root length (SRL) were recorded. Dried shoot biomass, RLD and SRL of E. pellita seedlings using stem cutting were significantly higher (P<0.05) compared to seed. Whereas, there were no significant differences (P>0.05) for root biomass, TRI and RI between the propagation types of E. pellita seedlings. Conclusions:E. pellita seedlings from stem cutting was greater in terms of root distribution compared to propagation by seeds at the nursery stage, and 50 kg N ha-1 was the optimal nitrogen concentration level from the considered levels to be applied to the E. pellita seedlings. The present study therefore provides more information and understanding on E. pellita for forest plantation companies in producing plant materials using stem cutting in a cost-effective and efficient manner. This would help the forest plantation companies in planning appropriate agronomic management in the future.


2020 ◽  
Vol 453 (1-2) ◽  
pp. 515-528 ◽  
Author(s):  
Amit Kumar ◽  
Richard van Duijnen ◽  
Benjamin M. Delory ◽  
Rüdiger Reichel ◽  
Nicolas Brüggemann ◽  
...  

Abstract Aims Root system responses to the limitation of either nitrogen (N) or phosphorus (P) are well documented, but how the early root system responds to (co-) limitation of one (N or P) or both in a stoichiometric framework is not well-known. In addition, how intraspecific competition alters plant responses to N:P stoichiometry is understudied. Therefore, we aimed to investigate the effects of N:P stoichiometry and competition on root system responses and overall plant performance. Methods Plants (Hordeum vulgare L.) were grown in rhizoboxes for 24 days in the presence or absence of competition (three vs. one plant per rhizobox), and fertilized with different combinations of N:P (low N + low P, low N + high P, high N + low P, and high N + high P). Results Shoot biomass was highest when both N and P were provided in high amounts. In competition, shoot biomass decreased on average by 22%. Total root biomass (per plant) was not affected by N:P stoichiometry and competition but differences were observed in specific root length and root biomass allocation across soil depths. Specific root length depended on the identity of limiting nutrient (N or P) and competition. Plants had higher proportion of root biomass in deeper soil layers under N limitation, while a greater proportion of root biomass was found at the top soil layers under P limitation. Conclusions With low N and P availability during early growth, higher investments in root system development can significantly trade off with aboveground productivity, and strong intraspecific competition can further strengthen such effects.


2016 ◽  
Vol 67 (6) ◽  
pp. 629 ◽  
Author(s):  
Rodolfo Mendoza ◽  
Ileana García ◽  
Daniela Deplama ◽  
Carolina Fernández López

Achieving a fast initial growth is crucial for legumes because grasses grow more rapidly and compete much better with forbs. In a pot experiment with a nutrient-deficient soil, we added nitrogen (N), phosphorus (P) and N + P to pure and mixed stands of Lotus tenuis and Festuca arundinacea and investigated the effects of on plant growth, nutrient uptake and symbiotic associations with arbuscular mycorrhizae and rhizobia. Plant yield, N and P acquisition, mycorrhizal colonisation, rhizobial nodulation and root length were measured and root diameter and root surface area were calculated after two harvests. Species responded differently to specific nutrients when grown pure or mixed. Comparing pure with mixed stands in soils fertilised with P and N + P, L. tenuis showed decreased shoot and particularly root biomass, whereas F. arundinacea showed increases in both biomasses. This suggests that the competitiveness of the grass with the legume increased upon P and N + P addition. In mixed stands, F. arundinacea produced 51–64% of the total shoot biomass and 69–74% of the total root biomass with P and N + P, respectively. Root length and root surface area were greater and the roots thinner in F. arundinacea than in L. tenuis. Addition of P and N + P increased rhizobial nodulation in legume roots but decreased mycorrhizal colonisation in both plants. Supply of N does not necessarily favour grasses, whereas P supply favours legumes. Optimisation of P nutrition might help to maximise N inputs into grasslands by symbiotic N-fixation and decrease inputs of inorganic N by fertilisation.


HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1579-1585 ◽  
Author(s):  
David Jespersen ◽  
Brian Schwartz

Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (gS)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.


1996 ◽  
Vol 12 (6) ◽  
pp. 871-885 ◽  
Author(s):  
Michael S. Hopkins ◽  
Paul Reddell ◽  
Robert K. Hewett ◽  
Andrew W. Graham

ABSTRACTRoot biomass, root lengths, and mycorrhizal associations were compared in a series of primary and Acacia-dominated secondary rainforest stands on nutrient-poor, red podzolic soils developed from low grade Palaeozoic metasediments. Five soil cores to 200 mm depth were collected at random locations from each of 20 sites. Ten of these sites were in 20–25 m high closed secondary forest (30–40 y old) dominated by Acacia aulacocarpa and ten sites were located in primary, selectively-logged, rainforest (28–32 m tall). Arbuscular mycorrhizas were the only form of association found in the primary forest sites. Ectomycorrhizas dominated the secondary forest sites although arbuscular mycorrhizas were also present. The primary forest sites had significantly higher root biomass (34.4 ± 17.8 t ha-1) and root length (33,400 ± 3,200 km ha-1) than the secondary forests (11.6 ± 4.6 t ha-1 and 25,200 ± 4,800 km ha-1 respectively), and this was interpreted as a reflection of the greater allocation of biomass to roots necessary to support the greater above ground biomass. The specific root length in the secondary forest (340 ± 119 cm g-1) was twice that of the primary forest (154 ± 65 cm g-1) indicating that the trees in the secondary forests achieved a degree of soil exploration which was comparable to that in the primary forest with less than half the biomass allocation to roots. The dominance of ectomycorrhizas in the secondary forest was associated with the prevalence of Acacia aulacocarpa, and the results cannot be extended to other secondary forests in the region. The implications that the dominant ectomycorrhizal associations have for the patterns of successional development and the patterns of species colonization in these Acaria-dominated secondary forests are discussed.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 273-276
Author(s):  
M. Yallappa ◽  
B.C. Mallesha ◽  
K.R. Rekha ◽  
M. Swathi

A green house experiment was carried out at Department of Agricultural Microbiology, GKVK, Bengaluru by use of IAA (MZL -8 and TCL -1) and GA3 (CAL – 1 and ACL- 3) producing yeast isolates on growth of tomato crop by spraying method with 8 treatments and 3 replication. The highest plant height, number of leaves per plant, number of branches per plant, root length, fresh shoot biomass, dry shoot biomass, fresh root biomass, dry root biomass, IAA and GA3 content, 44.73 cm, 80, 11.40, 14.70 cm, 24.00 g/plant, 11.75 g/plant, 7.98 g/plant, 3.91 g/plant, 1.205 μg/g of leaf and 0.550 μg/g of leaf, respectively by the yeast isolate TCL -1.The least plant height, number of leaves per plant, number of branches per plant, root length, fresh shoot biomass, dry shoot biomass, fresh root biomass, dry root biomass, IAA and GA3 content, 22.20 cm, 55.70, 8.00,9.00 cm, 11.00 g/plant, 6.23 g/plant, 3.67 g/plant, 2.07 g/plant, 0.384 μg/g of leaf and 0.200 μg/g of leaf, respectively was recorded by control (T1) treatment at 50 DAT.


Author(s):  
Hayati Akman

This study was conducted to investigate root and shoot traits of wild, ancient and modern wheat genotypes belonging to 8 different species at long tubes under field weather conditions. It was found significant differences between genotypes with regard to root and shoot traits. The research results indicated that root biomass distribution of genotypes at GS 31 ad GS 69, respectively was found 59.2% and 56.3% in 0-30 cm, 76.7% and 71.9% in 0-60 cm. Modern wheats (Çeşit 1252, Konya 2002) and Triticum vavilovii (ancient wheat) had high root biomass distribution in top soil. In the study, species with AABBDD genomes had higher root length than those with AABB, AABBGG and AA genomes. Triticum dicoccoides, Triticum timopheevii and Triticum monococcum had lower values than other genotypes in terms of root length, crown root number, root biomass, shoot biomass and plant height at both growth stages (GS 31 and GS 69), while Triticum vavilovii and Triticum spelta (hexaploid) took part in the front. Accordingly, Triticum vavilovii and Triticum spelta may be used in breeding programs to improve new modern cultivars with high root and shoot traits.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 542-545 ◽  
Author(s):  
Alain Olivier ◽  
Gilles D. Leroux

Sorghum cultivars were compared for their root development and production of the witchweed germination stimulant sorgoleone. In pot experiments, the resistant cultivar IS-7777 yielded a greater root biomass and root length, but a smaller root length/biomass ratio than the highly susceptible cultivars CK-60B and Bimbiri. Seedlings of these latter two cultivars exuded a high concentration of sorgoleone, while the low-susceptible cultivar IS-14825 exhibited a low production of this compound. In contrast, the low-susceptible cultivar Seguetana Niarabougou exhibited a high production of sorgoleone, while the resistant cultivars IS-7777 and Framida exuded a moderate amount of this compound. These results indicate that witchweed seed avoidance by means of reduced root growth is unlikely to be an important factor involved in the resistance of IS-7777. Low production of sorgoleone could partly explain low susceptibility of IS-14825, but other compounds may play a more significant role in the stimulation of witchweed germination.


Sign in / Sign up

Export Citation Format

Share Document