scholarly journals Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuqi Cong ◽  
Yiqin Xu ◽  
Yahai Lu

Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.

2010 ◽  
Vol 298 (5) ◽  
pp. C1100-C1108 ◽  
Author(s):  
Cheng Liu ◽  
Robert P. Gersch ◽  
Thomas J. Hawke ◽  
Michael Hadjiargyrou

Mustn1 (Mustang, musculoskeletal temporally activated novel gene) was originally identified in fracture callus tissue, but its greatest expression is detected in skeletal muscle. Thus, we conducted experiments to investigate the expression and function of Mustn1 during myogenesis. Temporally, quantitative real-time PCR analysis of muscle samples from embryonic day 17 to 12 mo of age reveals that Mustn1 mRNA expression is greatest at 3 mo of age and beyond, consistent with the expression pattern of Myod. In situ hybridization shows abundant Mustn1 expression in somites and developing skeletal muscles, while in adult muscle, Mustn1 is localized to some peripherally located nuclei. Using RNA interference (RNAi), we investigated the function of Mustn1 in C2C12 myoblasts. Though silencing Mustn1 mRNA had no effect on myoblast proliferation, it did significantly impair myoblast differentiation, preventing myofusion. Specifically, when placed in low-serum medium for up to 6 days, Mustn1-silenced myoblasts elongated poorly and were mononucleated. In contrast, control RNAi-treated and parental myoblasts presented as large, multinucleated myotubes. Further supporting the morphological observations, immunocytochemistry of Mustn1-silenced cells demonstrated significant reductions in myogenin (Myog) and myosin heavy chain (Myhc) expression at 4 and 6 days of differentiation as compared with control and parental cells. The decreases in Myog and Myhc protein expression in Mustn1-silenced cells were associated with robust (∼3-fold or greater) decreases in the expression of Myod and desmin ( Des), as well as the myofusion markers calpain 1 ( Capn1), caveolin 3 ( Cav3), and cadherin 15 (M-cadherin; Cadh15). Overall, we demonstrate that Mustn1 is an essential regulator of myogenic differentiation and myofusion, and our findings implicate Myod and Myog as its downstream targets.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4405-4419 ◽  
Author(s):  
R. Ruiz-Medrano ◽  
B. Xoconostle-Cazares ◽  
W.J. Lucas

Direct support for the concept that RNA molecules circulate throughout the plant, via the phloem, is provided through the characterisation of mRNA from phloem sap of mature pumpkin (Cucurbita maxima) leaves and stems. One of these mRNAs, CmNACP, is a member of the NAC domain gene family, some of whose members have been shown to be involved in apical meristem development. In situ RT-PCR analysis revealed the presence of CmNACP RNA in the companion cell-sieve element complex of leaf, stem and root phloem. Longitudinal and transverse sections showed continuity of transcript distribution between meristems and sieve elements of the protophloem, suggesting CmNACP mRNA transport over long distances and accumulation in vegetative, root and floral meristems. In situ hybridization studies conducted on CmNACP confirmed the results obtained using in situ RT-PCR. Phloem transport of CmNACP mRNA was proved directly by heterograft studies between pumpkin and cucumber plants, in which CmNACP transcripts were shown to accumulate in cucumber scion phloem and apical tissues. Similar experiments were conducted with 7 additional phloem-related transcripts. Collectively, these studies established the existence of a system for the delivery of specific mRNA transcripts from the body of the plant to the shoot apex. These findings provide insight into the presence of a novel mechanism likely used by higher plants to integrate developmental and physiological processes on a whole-plant basis.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1561-1570 ◽  
Author(s):  
FA Asimakopoulos ◽  
TL Holloway ◽  
EP Nacheva ◽  
MA Scott ◽  
P Fenaux ◽  
...  

Myeloproliferative disorders and myelodysplastic syndromes arise in multipotent progenitors and may be associated with chromosomal deletions that can be detected in peripheral blood granulocytes. We present here seven patients with myeloproliferative disorders or myelodysplastic syndromes in whom a deletion of the long arm of chromosome 20 was detectable by G-banding and/or fluorescence in situ hybridization in most or all bone marrow metaphases. However, in each case, microsatellite polymerase chain reaction (PCR) using 15 primer pairs spanning the common deleted region on 20q showed that the deletion was absent from most peripheral blood granulocytes. The human androgen receptor clonality assay was used to show that the vast majority of peripheral blood granulocytes were clonal in all four female patients. This represents the first demonstration that the 20q deletion can arise as a second event in patients with pre-existing clonal granulopoiesis. Microsatellite PCR analysis of whole bone marrow from two patients was consistent with cytogenetic studies, a result that suggests that cytogenetic analysis was not merely selecting for a minor subclone of cells carrying the deletion. Furthermore, in one patient, the deletion was present in both erythroid and granulocyte/monocyte colonies. This implies that the absence of the deletion in most peripheral blood granulocytes did not reflect lineage restriction of the progenitors carrying the deletion but may instead result from other selective influences such as preferential retention/destruction within the bone marrow of granulocytes carrying the deletion.


1996 ◽  
Vol 183 (6) ◽  
pp. 2581-2591 ◽  
Author(s):  
E Romas ◽  
N Udagawa ◽  
H Zhou ◽  
T Tamura ◽  
M Saito ◽  
...  

Interleukin (IL)-11 is a multifunctional cytokine whose role in osteoclast development has not been fully elucidated. We examined IL-11 production by primary osteoblasts and the effects of rat monoclonal anti-mouse glycoprotein 130 (gp130) antibody on osteoclast formation, using a coculture of mouse osteoblasts and bone marrow cells. IL-1, TNF alpha, PGE2, parathyroid hormone (PTH) and 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) similarly induced production of IL-11 by osteoblasts, but IL-6, IL-4, and TGF beta did not. Primary osteoblasts constitutively expressed mRNAs for both IL-11 receptor (IL-11R alpha) and gp130. Osteotropic factors did not modulate IL-11R alpha mRNA at 24 h, but steady-state gp130 mRNA expression in osteoblasts was upregulated by 1 alpha,25(OH)2D3, PTH, or IL-1. In cocultures, the formation of multinucleated osteoclast-like cells (OCLs) in response to IL-11, or IL-6 together with its soluble IL-6 receptor was dose-dependently inhibited by rat monoclonal anti-mouse gp130 antibody. Furthermore, adding anti-gp130 antibody abolished OCL formation induced by IL-1, and partially inhibited OCL formation induced by PGE2, PTH, or 1 alpha,25(OH)2D3. During osteoclast formation in marrow cultures, a sequential relationship existed between the expression of calcitonin receptor mRNA and IL-11R alpha mRNA. Osteoblasts as well as OCLs expressed transcripts for IL-11R alpha, as indicated by RT-PCR analysis and in situ hybridization. These results suggest a central role of gp130-coupled cytokines, especially IL-11, in osteoclast development. Since osteoblasts and mature osteoclasts expressed IL-11R alpha mRNA, both bone-forming and bone-resorbing cells are potential targets of IL-11.


Genomics ◽  
1991 ◽  
Vol 9 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Lygia da Veiga Pereira ◽  
Robert J. Desnick ◽  
David A. Adler ◽  
Christine M. Disteche ◽  
Edward H. Schuchman

1980 ◽  
Vol 151 (4) ◽  
pp. 984-989 ◽  
Author(s):  
V Schirrmacher ◽  
R Cheingsong-Popov ◽  
H Arnheiter

Murine hepatocytes, isolated by an in situ collagenase-perfusion technique and cultured in Petri dishes, were shown to form rosettes with liver-metastasizing syngeneic tumor cells. Pretreatment of the tumor cells with neuraminidase generally increased the binding, whereas pretreatment of the liver cells with neuraminidase abolished the binding completely. The tumor-cell binding may be mediated by the previously described lectin-like receptor of hepatocytes that also was sensitive to neuraminidase treatment and that bound desialylated cells better than normal cells. Anti-H-2 sera could efficiently inhibit the rosette formation of metastatic tumor cells with the hepatocytes, which points to a possible role of H-2 molecules in this interaction of neoplastic and normal cells.


2016 ◽  
Vol 431 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Abe ◽  
Aleksandra J. Ozga ◽  
Jim Swoger ◽  
James Sharpe ◽  
Jorge Ripoll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document