scholarly journals Environmental Factors Influencing Phyllosphere Bacterial Communities in Giant Pandas’ Staple Food Bamboos

2021 ◽  
Vol 12 ◽  
Author(s):  
Juejie Long ◽  
Wei Luo ◽  
Jianmei Xie ◽  
Yuan Yuan ◽  
Jia Wang ◽  
...  

The giant panda has developed a series of evolutionary strategies to adapt to a bamboo diet. The abundance and diversity of the phyllosphere microbiome change dramatically depending on the season, host species, location, etc., which may, in turn, affect the growth and health of host plants. However, few studies have investigated the factors that influence phyllosphere bacteria in bamboo, a staple food source of the giant panda. Amplicon sequencing of the 16S rRNA gene was used to explore the abundance and diversity of phyllosphere bacteria in three bamboo species (Arundinaria spanostachya, Yushania lineolate, and Fargesia ferax) over different seasons (spring vs. autumn), elevation, distance from water, etc., in Liziping National Nature Reserve (Liziping NR), China. And whole-genome shotgun sequencing uncovered the differences in biological functions (KEGG and Carbohydrate-Active enzymes functions) of A. spanostachya phyllosphere bacteria between spring and autumn. The results showed that the abundance and diversity of F. ferax phyllosphere bacteria were greater than that of the other two bamboo species in both seasons. And three kinds of bamboo phyllosphere bacteria in autumn were significantly higher than in spring. The season was a more important factor than host bamboo species in determining the community structure of phyllosphere bacteria based on the (un)weighted UniFrac distance matrix. The composition, diversity, and community structure of phyllosphere bacteria in bamboo were primarily affected by the season, species, altitude, tree layer, and shrub layer. Different bacterial communities perform different functions in different bamboo species, and long-term low temperatures may shape more varied and complex KEGG and Carbohydrate-Active enzymes functions in spring. Our study presented a deeper understanding of factors influencing the bacterial community in the bamboo phyllosphere. These integrated results offer an original insight into bamboo, which can provide a reference for the restoration and management of giant panda bamboo food resources in the Xiaoxiangling mountains.

2021 ◽  
Author(s):  
Juejie Long ◽  
Wei Luo ◽  
Jianmei Xie ◽  
Yuan Yuan ◽  
Jia Wang ◽  
...  

Abstract Background The giant panda has developed a series of evolutionary strategies to adapt to a bamboo diet. The abundance and diversity of the phyllosphere microbiome change dramatically depending on the season, host species, location etc., which may, in turn, affect the growth and health of host plants. However, few studies have investigated the factors that influence phyllosphere bacteria in bamboo, a staple food source of the giant panda. Methods Amplicon sequencing of the 16S rRNA gene of rRNA genomic loci was used to explore the abundance and diversity of phyllosphere bacteria in three bamboo species (Arundinaria spanostachya, Yushania lineolate and Fargesia ferax) over different seasons (spring vs. autumn), elevation, distance from water, etc. in Liziping National Nature Reserve (Liziping NR), China. Results The results show that a total of 2,562 operational taxonomic units (OTUs) were obtained from all 101 samples, which belonged to 24 phyla and 608 genera. Proteobacteria was the dominant phyla, followed by Acidobacteria and Actinobacteria. The Sobs index and Shannon index of F. ferax phyllosphere bacteria were greater than that of the other two bamboo species in both seasons. The Sobs index and Shannon index of phyllosphere bacteria in all three bamboo species in autumn were significantly higher than in spring. Season was a stronger driver of community structure of phyllosphere bacteria than host bamboo species based on the (un)weighted UniFrac distance matrix. Many bacteria phyla were negatively correlated with elevation and distance from water, but positively related to mean height of bamboo and mean base diameter of bamboo. Function prediction of PICRUSt revealed the relative abundance of transporters function was highest in all three bamboo species, followed by ABC transporters. There were nine relative abundance pathways with significant differences in the 3-level KEGG pathway. The genes related to membrane transport, signal transduction and porphyrin transport in phyllosphere bacteria of F. ferax were significantly lower than in the other two species. Conclusions The composition, diversity and community structure of phyllosphere bacteria in bamboo, a staple food source of giant pandas, were primarily affected by the season, species, altitude, tree layer and shrub layer. The better the growth of bamboo forests, the richer the bacterial phyla in the bamboo phyllosphere. Our study presented a deeper understanding of factors influencing the bacterial community in the bamboo phyllosphere. These findings could provide a reference for the restoration and management of giant panda habitat and food resources in this area, especially for those small isolated populations of giant pandas in Xiaoxiangling mountains.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1465
Author(s):  
Chao Shen ◽  
Liuyan Huang ◽  
Guangwu Xie ◽  
Yulai Wang ◽  
Zongkai Ma ◽  
...  

Increasing discharge of plastic debris into aquatic ecosystems and the worsening ecological risks have received growing attention. Once released, plastic debris could serve as a new substrate for microbes in waters. The complex relationship between plastics and biofilms has aroused great interest. To confirm the hypothesis that the presence of plastic in water affects the composition of biofilm in natural state, in situ biofilm culture experiments were conducted in a lake for 40 days. The diversity of biofilm attached on natural (cobble stones (CS) and wood) and plastic substrates (Polyethylene terephthalate (PET) and Polymethyl methacrylate (PMMA)) were compared, and the community structure and composition were also analyzed. Results from high-throughput sequencing of 16S rRNA showed that the diversity and species richness of biofilm bacterial communities on natural substrate (observed species of 1353~1945, Simpson index of 0.977~0.989 and Shannon–Wiener diversity index of 7.42~8.60) were much higher than those on plastic substrates (observed species of 900~1146, Simpson index of 0.914~0.975 and Shannon–Wiener diversity index of 5.47~6.99). The NMDS analyses were used to confirm the taxonomic significance between different samples, and Anosim (p = 0.001, R = 0.892) and Adonis (p = 0.001, R = 808, F = 11.19) demonstrated that this classification was statistically rigorous. Different dominant bacterial communities were found on plastic and natural substrates. Alphaproteobacterial, Betaproteobacteria and Synechococcophycideae dominated on the plastic substrate, while Gammaproteobacteria, Phycisphaerae and Planctomycetia played the main role on the natural substrates. The bacterial community structure of the two substrates also showed significant difference which is consistent with previous studies using other polymer types. Our results shed light on the fact that plastic debris can serve as a new habitat for biofilm colonization, unlike natural substrates, pathogens and plastic-degrading microorganisms selectively attached to plastic substrates, which affected the bacterial community structure and composition in aquatic environment. This study provided a new insight into understanding the potential impacts of plastics serving as a new habitat for microbial communities in freshwater environments. Future research should focus on the potential impacts of plastic-attached biofilms in various aquatic environments and the whole life cycle of plastics (i.e., from plastic fragments to microplastics) and also microbial flock characteristics using microbial plastics in the natural environment should also be addressed.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 306
Author(s):  
Vinicio Carrión-Paladines ◽  
Andreas Fries ◽  
Andrés Muñoz ◽  
Eddy Castillo ◽  
Roberto García-Ruiz ◽  
...  

This study evaluated the effects of land-use change (L-UCH) on dung beetle community structure (Scarabaeinae) in a disturbed dry ecosystem in southern Ecuador. Five different L-UCH classes were analyzed by capturing the dung beetle species at each site using 120 pitfall traps in total. To determine dung beetle abundance and diversity at each L-UCH, a general linear model (GLM) and a redundancy analysis (RDA) were applied, which correlated environmental and edaphic conditions to the community structure. Furthermore, changes in dung-producing vertebrate fauna were examined, which varied significantly between the different L-UCH classes due to the specific anthropogenic use or level of ecosystem disturbance. The results indicated that soil organic matter, pH, potassium, and phosphorus (RDA: component 1), as well as temperature and altitude (RDA: component 2) significantly affect the abundance of beetles (GLM: p value < 0.001), besides the food availability (dung). The highest abundance and diversity (Simpson’s index > 0.4, Shannon-Wiener index > 1.10) was found in highly disturbed sites, where soils were generally more compacted, but with a greater food supply due to the introduced farm animals. At highly disturbed sites, the species Canthon balteatus, Dichotomius problematicus, and Onthphagus confuses were found specifically, which makes them useful as bio-indicators for disturbed dry forest ecosystems in southern Ecuador.


Oikos ◽  
2002 ◽  
Vol 96 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Peter Armbruster ◽  
Robert A. Hutchinson ◽  
Peter Cotgreave

2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Zhang ◽  
Xi Xiao ◽  
Songze Chen ◽  
Jing Zhao ◽  
Zongheng Chen ◽  
...  

Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karina A. Chavarria ◽  
Kristin Saltonstall ◽  
Jorge Vinda ◽  
Jorge Batista ◽  
Megan Lindmark ◽  
...  

AbstractLand use is known to affect water quality yet the impact it has on aquatic microbial communities in tropical systems is poorly understood. We used 16S metabarcoding to assess the impact of land use on bacterial communities in the water column of four streams in central Panama. Each stream was influenced by a common Neotropical land use: mature forest, secondary forest, silvopasture and traditional cattle pasture. Bacterial community diversity and composition were significantly influenced by nearby land uses. Streams bordered by forests had higher phylogenetic diversity (Faith’s PD) and similar community structure (based on weighted UniFrac distance), whereas the stream surrounded by traditional cattle pasture had lower diversity and unique bacterial communities. The silvopasture stream showed strong seasonal shifts, with communities similar to forested catchments during the wet seasons and cattle pasture during dry seasons. We demonstrate that natural forest regrowth and targeted management, such as maintaining and restoring riparian corridors, benefit stream-water microbiomes in tropical landscapes and can provide a rapid and efficient approach to balancing agricultural activities and water quality protection.


Sign in / Sign up

Export Citation Format

Share Document