scholarly journals Insertion Specificity of the hATx-6 Transposase of Hydra magnipapillata

2021 ◽  
Vol 8 ◽  
Author(s):  
Paul Riggs ◽  
George Blundell-Hunter ◽  
Joanna Hagelberger ◽  
Guoping Ren ◽  
Laurence Ettwiller ◽  
...  

Transposable elements (TE) are mobile genetic elements, present in all domains of life. They commonly encode a single transposase enzyme, that performs the excision and reintegration reactions, and these enzymes have been used in mutagenesis and creation of next-generation sequencing libraries. All transposases have some bias in the DNA sequence they bind to when reintegrating the TE DNA. We sought to identify a transposase that showed minimal sequence bias and could be produced recombinantly, using information from the literature and a novel bioinformatic analysis, resulting in the selection of the hATx-6 transposase from Hydra vulgaris (aka Hydra magnipapillata) for further study. This transposase was tested and shown to be active both in vitro and in vivo, and we were able to demonstrate very low sequence bias in its integration preference. This transposase could be an excellent candidate for use in biotechnology, such as the creation of next-generation sequencing libraries.

2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Marilia Rita Pinzone ◽  
Maria Paola Bertuccio ◽  
D. Jake VanBelzen ◽  
Ryan Zurakowski ◽  
Una O’Doherty

ABSTRACT Next-generation sequencing (NGS) represents a powerful tool to unravel the genetic make-up of the HIV reservoir, but limited data exist on its use in vitro. Moreover, most NGS studies do not separate integrated from unintegrated DNA, even though selection pressures on these two forms should be distinct. We reasoned we could use NGS to compare the infection of resting and activated CD4 T cells in vitro to address how the metabolic state affects reservoir formation and dynamics. To address these questions, we obtained HIV sequences 2, 4, and 8 days after NL4-3 infection of metabolically activated and quiescent CD4 T cells (cultured with 2 ng/ml interleukin-7). We compared the composition of integrated and total HIV DNA by isolating integrated HIV DNA using pulsed-field electrophoresis before performing sequencing. After a single-round infection, the majority of integrated HIV DNA was intact in both resting and activated T cells. The decay of integrated intact proviruses was rapid and similar in both quiescent and activated T cells. Defective forms accumulated relative to intact ones analogously to what is observed in vivo. Massively deleted viral sequences formed more frequently in resting cells, likely due to lower deoxynucleoside triphosphate (dNTP) levels and the presence of multiple restriction factors. To our surprise, the majority of these deleted sequences did not integrate into the human genome. The use of NGS to study reservoir dynamics in vitro provides a model that recapitulates important aspects of reservoir dynamics. Moreover, separating integrated from unintegrated HIV DNA is important in some clinical settings to properly study selection pressures. IMPORTANCE The major implication of our work is that the decay of intact proviruses in vitro is extremely rapid, perhaps as a result of enhanced expression. Gaining a better understanding of why intact proviruses decay faster in vitro might help the field identify strategies to purge the reservoir in vivo. When used wisely, in vitro models are a powerful tool to study the selective pressures shaping the viral landscape. Our finding that massively deleted sequences rarely succeed in integrating has several ramifications. It demonstrates that the total HIV DNA can differ substantially in character from the integrated HIV DNA under certain circumstances. The presence of unintegrated HIV DNA has the potential to obscure selection pressures and confound the interpretation of clinical studies, especially in the case of trials involving treatment interruptions.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 10540-10540
Author(s):  
Maria A. Pantaleo ◽  
Annalisa Astolfi ◽  
Milena Urbini ◽  
Valentina Indio ◽  
Margherita Nannini ◽  
...  

10540 Background: Mutations of the receptors KIT and PDGFRA in GIST are the oncogenetic events of disease as well as the targets of molecular therapies. Within the PDGFRA mutations, the D842V mutation in exon 18 confers in vitro and in vivo resistance to imatinib. Next generation sequencing techniques may completely dissect all the possible somatic mutations and genomic rearrangements in order to identify novel therapeutic targets in this patients population. Methods: Five patients with gastric GIST were analyased (3 M, 2 F; mean age 65,5 years, range 51-77). The tumor dimension ranged between 3 and 15 cm, MI < 2 and 8 /50 HPF. No metastases were present in all cases. The KIT and PDGFRA anlysis showed a D842V mutation in exon 18 of PDGFRA in all cases. Whole transcriptome sequencing was performed with Illumina HiScanSQ platform with a paired-end strategy (75x2). After performing quality controls, the short reads were mapped with Tophat-Botie pipeline against the human reference genome (HG19). The variations, such as Single nucleotide variants (SNVs) and InDels, were called by SNVMix2 (a software suited for SNVs discovery in tumor samples) implementing an accurate filtering procedures developed in our laboratory. Two predictors of mutations effect at protein level (SNPs&GO and Provean) were employed in order to prioritize the emerging variation. Results: An average of 206 coding non-synonymous variants were highlighted in the five GIST samples, of which ~ 30% were predicted as deleterious with at least one predictor. In addition to PDGFRA D842V mutation, in all five patients were found mutations on different receptor tyrosine kinases, such as FGFR4 and DDR2. Moreover three out of five patients harboured mutations on members of the MDR/TAP subfamily that are involved in multidrug resistance, in particular on ABCB1, ABCB4 and on ABCB6 genes. Other mutations were found on the hedgehog and MAPK signaling pathway and on SNF/SWI chromatin remodeling complex. Conclusions: New molecular events have been identified in PDGFRA D842V mutant GIST. These data should be validated in larger series and the role of these mutations as therapeutic targets should be further investigated.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background Long noncoding RNAs (lncRNAs) are important functional regulators of many biological processes of cancers. However, the mechanisms by which lncRNAs modulate androgen-independent prostate cancer (AIPC) development remain largely unknown. Methods Next-generation sequencing technology and RT-qPCR were used to assess LEF1-AS1 expression level in AIPC tissues and adjacent normal tissues. Functional in vitro experiments, including colony formation, EDU and transwell assays were performed to assess the role of LEF1-AS1 in AIPC. Xenograft assays were conducted to assess the effect of LEF1-AS1 on cell proliferation in vivo. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) assays were performed to elucidate the regulatory network of LEF1-AS1. Results The next-generation sequencing results showed that LEF1-AS1 is significantly overexpressed in AIPC. Furthermore, our RT-qPCR assay data showed that LEF1-AS1 is overexpressed in AIPC tissues. Functional experiments showed that LEF1-AS1 promotes the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and tumour growth in vivo by recruiting the transcription factor C-myb to the promoter of FZD2, inducing its transcription. Furthermore, LEF1-AS1 was shown to function as a competing endogenous RNA (ceRNA) that sponges miR-328 to activate CD44. Conclusion In summary, the results of our present study revealed that LEF1-AS1 acts as a tumour promoter in the progression of AIPC. Furthermore, the results revealed that LEF1-AS1 functions as a ceRNA and regulates Wnt/β-catenin pathway activity via FZD2 and CD44. Our results provide new insights into the mechanism that links the function of LEF1-AS1 with AIPC and suggests that LEF1-AS1 may serve as a novel potential target for the improvement of AIPC therapy.


2020 ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background: Long noncoding RNAs (lncRNAs) are important functional regulators of many biological processes of cancers. However, the mechanisms by which lncRNAs modulate androgen-independent prostate cancer (AIPC) development remain largely unknown.Methods: Next-generation sequencing technology and RT-qPCR were used to assess LEF1-AS1 expression level in AIPC tissues and adjacent normal tissues. Functional in vitro experiments, including colony formation, EDU and transwell assays were performed to assess the role of LEF1-AS1 in AIPC. Xenograft assays were conducted to assess the effect of LEF1-AS1 on cell proliferation in vivo. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) assays were performed to elucidate the regulatory network of LEF1-AS1.Results: The next-generation sequencing results showed that LEF1-AS1 is significantly overexpressed in AIPC. Furthermore, our RT-qPCR assay data showed that LEF1-AS1 is overexpressed in AIPC tissues. Functional experiments showed that LEF1-AS1 promotes the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and tumour growth in vivo by recruiting the transcription factor C-myb to the promoter of FZD2, inducing its transcription. Furthermore, LEF1-AS1 was shown to function as a competing endogenous RNA (ceRNA) that sponges miR-328 to activate CD44.Conclusion: In summary, the results of our present study revealed that LEF1-AS1 acts as a tumour promoter in the progression of AIPC. Furthermore, the results revealed that LEF1-AS1 functions as a ceRNA and regulates Wnt/β-catenin pathway activity via FZD2 and CD44. Our results provide new insights into the mechanism that links the function of LEF1-AS1 with AIPC and suggests that LEF1-AS1 may serve as a novel potential target for the improvement of AIPC therapy.


2018 ◽  
Vol 28 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Julie-Anne Tanner ◽  
Andy Z. Zhu ◽  
Katrina G. Claw ◽  
Bhagwat Prasad ◽  
Viktoriya Korchina ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Thomas G. Nührenberg ◽  
Marco Cederqvist ◽  
Federico Marini ◽  
Christian Stratz ◽  
Björn A. Grüning ◽  
...  

Background. Diabetes mellitus (DM) has been associated with increased platelet reactivity as well as increased levels of platelet RNAs in plasma. Here, we sought to evaluate whether the platelet transcriptome is altered in the presence of uncontrolled DM. Methods. Next-generation sequencing (NGS) was performed on platelet RNA for 5 patients with uncontrolled DM (HbA1c 9.0%) and 5 control patients (HbA1c 5.5%) with otherwise similar clinical characteristics. RNA was isolated from leucocyte-depleted platelet-rich plasma. Libraries of platelet RNAs were created separately for long RNAs after ribosomal depletion and for small RNAs from total RNA, followed by next-generation sequencing. Results. Platelets in both groups demonstrated RNA expression profiles characterized by absence of leukocyte-specific transcripts, high expression of well-known platelet transcripts, and in total 6,343 consistently detectable transcripts. Extensive statistical bioinformatic analysis yielded 12 genes with consistently differential expression at a lenient FDR < 0.1, thereof 8 protein-coding genes and 2 genes with known expression in platelets (MACF1 and ITGB3BP). Three of the four differentially expressed noncoding genes were YRNAs (RNY1, RNY3, and RNY4) which were all downregulated in DM. 23 miRNAs were differentially expressed between the two groups. Of the 13 miRNAs with decreased expression in the diabetic group, 8 belonged to the DLK1–DIO3 gene region on chromosome 14q32.2. Conclusions. In this study, uncontrolled DM had a remote impact on different components of the platelet transcriptome. Increased expression of MACF1, together with supporting predicted mRNA-miRNA interactions as well as reduced expression of RNYs in platelets, may reflect subclinical platelet activation in uncontrolled DM.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Shannon J. McKie ◽  
Anthony Maxwell ◽  
Keir C. Neuman

Next-generation sequencing (NGS) platforms have been adapted to generate genome-wide maps and sequence context of binding and cleavage of DNA topoisomerases (topos). Continuous refinements of these techniques have resulted in the acquisition of data with unprecedented depth and resolution, which has shed new light on in vivo topo behavior. Topos regulate DNA topology through the formation of reversible single- or double-stranded DNA breaks. Topo activity is critical for DNA metabolism in general, and in particular to support transcription and replication. However, the binding and activity of topos over the genome in vivo was difficult to study until the advent of NGS. Over and above traditional chromatin immunoprecipitation (ChIP)-seq approaches that probe protein binding, the unique formation of covalent protein–DNA linkages associated with DNA cleavage by topos affords the ability to probe cleavage and, by extension, activity over the genome. NGS platforms have facilitated genome-wide studies mapping the behavior of topos in vivo, how the behavior varies among species and how inhibitors affect cleavage. Many NGS approaches achieve nucleotide resolution of topo binding and cleavage sites, imparting an extent of information not previously attainable. We review the development of NGS approaches to probe topo interactions over the genome in vivo and highlight general conclusions and quandaries that have arisen from this rapidly advancing field of topoisomerase research.


Sign in / Sign up

Export Citation Format

Share Document