scholarly journals Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors

2021 ◽  
Vol 8 ◽  
Author(s):  
Igor E. Kasheverov ◽  
Alexey I. Kuzmenkov ◽  
Denis S. Kudryavtsev ◽  
Ivan S. Chudetskiy ◽  
Irina V. Shelukhina ◽  
...  

Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.

2017 ◽  
Vol 8 (40) ◽  
pp. 6283-6288 ◽  
Author(s):  
Lei Xu ◽  
Ning Ren ◽  
Ji Pang ◽  
Hongping Deng ◽  
Xinyuan Zhu ◽  
...  

CO2 responsive fluorescent vesicles from a GFP chromophore labeled block-copolymer could change their size and fluorescence to mimic jellyfish breathing.


2018 ◽  
Vol 19 (12) ◽  
pp. 3778 ◽  
Author(s):  
Nina Bozhanova ◽  
Mikhail Baranov ◽  
Nadezhda Baleeva ◽  
Alexey Gavrikov ◽  
Alexander Mishin

Fluorogens are an attractive type of dye for imaging applications, eliminating time-consuming washout steps from staining protocols. With just a handful of reported fluorogen-protein pairs, mostly in the green region of spectra, there is a need for the expansion of their spectral range. Still, the origins of solvatochromic and fluorogenic properties of the chromophores suitable for live-cell imaging are poorly understood. Here we report on the synthesis and labeling applications of novel red-shifted fluorogenic cell-permeable green fluorescent protein (GFP) chromophore analogs.


2019 ◽  
Vol 316 (1) ◽  
pp. R38-R49
Author(s):  
Stephen J. Page ◽  
Mingyan Zhu ◽  
Suzanne M. Appleyard

Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine’s effects; however nicotine’s effect on these neurons is unknown. Here, we determined nicotine’s actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 603 ◽  
Author(s):  
Jiong Ning ◽  
Jie Ren ◽  
Yang Xiong ◽  
Yong Wu ◽  
Manqi Zhangsun ◽  
...  

α-Conotoxins (α-CTxs) are small disulfide-rich peptides from venom of Conus species that target nicotinic acetylcholine receptors (nAChRs). The muscle-type nAChRs have been recognized as a potential target for several diseases, such as myogenic disorders, muscle dystrophies, and myasthenia gravis. EI, an α4/7-CTx, mainly blocks α1β1δε nAChRs and has an extra N-terminal extension of three amino acids. In this study, the alanine scanning (Ala-scan) mutagenesis was applied in order to identify key residues of EI for binding with mouse α1β1δε nAChR. The Ala-substituted analogues were tested for their abilities of modulating muscle and neuronal nAChRs in Xenopus laevis oocytes using two-electrode voltage clamp (TEVC) recordings. Electrophysiological results indicated that the vital residues for functional activity of EI were His-7, Pro-8, Met-12, and Pro-15. These changes exhibited a significant decrease in potency of EI against mouse α1β1δε nAChR. Interestingly, replacing the critical serine (Ser) at position 13 with an alanine (Ala) residue resulted in a 2-fold increase in potency at the α1β1δε nAChR, and showed loss of activity on α3β2 and α3β4 nAChRs. Selectivity and potency of [S13A] EI was improved compared with wild-type EI (WT EI). In addition, the structure–activity relationship (SAR) of EI revealed that the “Arg1–Asn2–Hyp3” residues at the N-terminus conferred potency at the muscle-type nAChRs, and the deletion analogue △1–3 EI caused a total loss of activity at the α1β1δε nAChR. Circular dichroism (CD) spectroscopy studies demonstrated that activity loss of truncated analogue △1–3 EI for α1β1δε nAChR is attributed to disturbance of the secondary structure. In this report, an Ala-scan mutagenesis strategy is presented to identify crucial residues that are significantly affecting potency of E1 for mouse α1β1δε nAChR. It may also be important in remodeling of some novel ligands for inhibiting muscle-type nAChRs.


2001 ◽  
Vol 276 (19) ◽  
pp. 15810-15815 ◽  
Author(s):  
Yuri N. Utkin ◽  
Viktoriya V. Kukhtina ◽  
Elena V. Kryukova ◽  
Florence Chiodini ◽  
Daniel Bertrand ◽  
...  

2018 ◽  
Vol 16 (14) ◽  
pp. 2397-2401 ◽  
Author(s):  
Masahiro Ikejiri ◽  
Haruka Kojima ◽  
Yuumi Fugono ◽  
Aki Fujisaka ◽  
Yoshiko Chihara ◽  
...  

The E- and Z-isomers of E/Z-photoisomerizable diarylmethylene analogs of the GFP chromophore (geo-DAIN) produce different colors of aggregation-induced emission (AIE).


Sign in / Sign up

Export Citation Format

Share Document