scholarly journals Alpha-Synuclein Accumulation and Its Phosphorylation in the Enteric Nervous System of Patients Without Neurodegeneration: An Explorative Study

2020 ◽  
Vol 12 ◽  
Author(s):  
Lu-Lu Bu ◽  
Kai-Xun Huang ◽  
De-Zhi Zheng ◽  
Dan-Yu Lin ◽  
Ying Chen ◽  
...  

Alpha-synuclein (α-Syn) is widely distributed and involved in the regulation of the nervous system. The phosphorylation of α-Syn at serine 129 (pSer129α-Syn) is known to be closely associated with α-Synucleinopathies, especially Parkinson's disease (PD). The present study aimed to explore the α-Syn accumulation and its phosphorylation in the enteric nervous system (ENS) in patients without neurodegeneration. Patients who underwent colorectal surgery for either malignant or benign tumors that were not suitable for endoscopic resection (n = 19) were recruited to obtain normal intestinal specimens, which were used to assess α-Syn immunoreactivity patterns using α-Syn and pSer129α-Syn antibodies. Furthermore, the sub-location of α-Syn in neurons was identified by α-Syn/neurofilament double staining. Semi-quantitative counting was used to evaluate the expression of α-Syn and pSer129α-Syn in the ENS. Positive staining of α-Syn was detected in all intestinal layers in patients with non-neurodegenerative diseases. There was no significant correlation between the distribution of α-Syn and age (p = 0.554) or tumor stage (p = 0.751). Positive staining for pSer129α-Syn was only observed in the submucosa and myenteric plexus layers. The accumulation of pSer129α-Syn increased with age. In addition, we found that the degenerative changes of the ENS were related to the degree of tumor malignancy (p = 0.022). The deposits of α-Syn were present in the ENS of patients with non-neurodegenerative disorders; particularly the age-dependent expression of pSer129α-Syn in the submucosa and myenteric plexus. The current findings of α-Syn immunostaining in the ENS under near non-pathological conditions weaken the basis of using α-Syn pathology as a suitable hallmark to diagnose α-Synucleinopathies including PD. However, our data provided unique perspectives to study gastrointestinal dysfunction in non-neurodegenerative disorders. These findings provide new evidence to elucidate the neuropathological characteristics and α-Syn pathology pattern of the ENS in non-neurodegenerative conditions.

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 465
Author(s):  
Silvia Cerantola ◽  
Valentina Caputi ◽  
Gabriella Contarini ◽  
Maddalena Mereu ◽  
Antonella Bertazzo ◽  
...  

Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT+/−) and wild-type (DAT+/+) mice (14 ± 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100β immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.


2011 ◽  
Vol 20 (4) ◽  
pp. 181-188 ◽  
Author(s):  
He-Jin Lee ◽  
Ji-Eun Suk ◽  
Kyung-Won Lee ◽  
Seung-Hwa Park ◽  
Peter C. Blumbergs ◽  
...  

2007 ◽  
Vol 293 (4) ◽  
pp. G903-G910 ◽  
Author(s):  
Takazumi Kimura ◽  
Tomofumi Amano ◽  
Hirotsugu Uehara ◽  
Hajime Ariga ◽  
Tsuyoshi Ishida ◽  
...  

Corticotropin-releasing factor (CRF) and urocortin I (UcnI) have been shown to accelerate colonic transit after central nervous system (CNS) or peripheral administration, but the mechanism of their peripheral effect on colonic motor function has not been fully investigated. Furthermore, the localization of UcnI in the enteric nervous system (ENS) of the colon is unknown. We investigated the effect of CRF and UcnI on colonic motor function and examined the localization of CRF, UcnI, CRF receptors, choline acetyltransferase (ChAT), and 5-HT. Isometric tension of rat colonic muscle strips was measured. The effect of CRF, UcnI on phasic contractions, and electrical field stimulation (EFS)-induced off-contractions were examined. The effects of UcnI on both types of contraction were also studied in the presence of antalarmin, astressin2-B, tetrodotoxin (TTX), atropine, and 5-HT antagonists. The localizations of CRF, UcnI, CRF receptors, ChAT, and 5-HT in the colon were investigated by immunohistochemistry. CRF and UcnI increased both contractions dose dependently. UcnI exerted a more potent effect than CRF. Antalarmin, TTX, atropine, and 5-HT antagonists abolished the contractile effects of UcnI. CRF and UcnI were observed in the neuronal cells of the myenteric plexus. UcnI and ChAT, as well as UcnI and 5-HT, were colocalized in some of the neuronal cells of the myenteric plexus. This study demonstrated that CRF and UcnI act on the ENS and increase colonic contractility by enhancing cholinergic and serotonergic neurotransmission. These peptides are present in myenteric neurons. CRF and, perhaps, to a greater extent, UcnI appear to act as neuromodulators in the ENS of the rat colon.


2015 ◽  
Vol 602 ◽  
pp. 145-149 ◽  
Author(s):  
Iban Aldecoa ◽  
Judith Navarro-Otano ◽  
Nadia Stefanova ◽  
Fabienne S. Sprenger ◽  
Klaus Seppi ◽  
...  

2019 ◽  
Author(s):  
Phillip A. Baker ◽  
Matthew D. Meyer ◽  
Ashley Tsang ◽  
Rosa A. Uribe

AbstractThe gastrointestinal tract is constructed with an intrinsic series of interconnected ganglia that span its entire length, called the enteric nervous system (ENS). The ENS exerts critical local reflex control over many essential gut functions; including peristalsis, water balance, hormone secretions and intestinal barrier homeostasis. ENS ganglia exist as a collection of neurons and glia that are arranged in a series of plexuses throughout the gut: the myenteric plexus and submucosal plexus. While it is known that enteric ganglia are derived from a stem cell population called the neural crest, mechanisms that dictate final neuropil plexus organization remain obscure. Recently, the vertebrate animal, zebrafish, has emerged as a useful model to understand ENS development, however knowledge of its developing myenteric plexus architecture was unknown. Here, we examine myenteric plexus of the maturing zebrafish larval fish histologically over time and find that it consists of a series of tight axon layers and long glial cell processes that wrap the circumference of the gut tube to completely encapsulate it, along all levels of the gut. By late larval stages, complexity of the myenteric plexus increases such that a layer of axons is juxtaposed to concentric layers of glial cells. Ultrastructurally, glial cells contain glial filaments and make intimate contacts with one another in long, thread-like projections. Conserved indicators of vesicular axon profiles are readily abundant throughout the larval plexus neuropil. Together, these data extend our understanding of myenteric plexus architecture in maturing zebrafish, thereby enabling functional studies of its formation in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Goichi Beck ◽  
Yumiko Hori ◽  
Yoshito Hayashi ◽  
Eiichi Morii ◽  
Tetsuo Takehara ◽  
...  

Background. Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and nonmotor impairments, including constipation. Lewy bodies and neurites, the pathological hallmarks of PD, are found in the enteric nervous system (ENS) as well as the central nervous system. Constipation is a well-documented premotor symptom in PD, and recent reports have demonstrated Lewy pathology in gastrointestinal (GI) tissues of PD patients prior to the onset of motor symptoms. Objective. In the present study, we assessed Lewy pathology in the GI tracts of seven PD patients who had undergone a gastrectomy, gastric polypectomy, or colonic polypectomy prior to the onset of motor symptoms in order to assess whether the presence of pathological αSyn in the ENS could be a predictor for PD. Methods. GI tissue samples were collected from control patients and patients with premotor PD. Immunohistochemistry was performed using primary antibodies against α-synuclein (αSyn) and phosphorylated αSyn (pαSyn), after which Lewy pathology in each sample was assessed. Results. In all control and premotor PD patients, accumulation of αSyn was observed in the myenteric plexus in both the stomach and colon. In 82% (18/22) of control patients, mild-to-moderate accumulation of αSyn was observed in the submucosal plexus. However, there was no deposition of pαSyn in the ENS of control patients. In patients with premotor PD, abundant accumulation of αSyn was observed in the myenteric plexus, similar to control patients. On the other hand, pαSyn-positive aggregates were also observed in the nerve fibers in the muscularis propria in all examined patients with premotor PD (100%, 3/3), while the deposition of pαSyn in the submucosal plexus was only observed in one patient (14%, 1/7). Conclusion. Our results suggest that the detection of pαSyn, but not αSyn, especially in the muscularis propria of GI tracts, could be a sensitive prodromal biomarker for PD.


Gut ◽  
1999 ◽  
Vol 44 (5) ◽  
pp. 666-674 ◽  
Author(s):  
T Wester ◽  
D S O’Briain ◽  
P Puri

BACKGROUNDNitric oxide is the most important transmitter in non-adrenergic non-cholinergic nerves in the human gastrointestinal tract. Impaired nitrergic innervation has been described in Hirschsprung’s disease, hypertrophic pyloric stenosis, and intestinal neuronal dysplasia (IND). Recent findings indicate that hyperganglionosis, one of the major criteria of IND, is age dependent. However, information is scanty regarding the neurone density in normal human bowel in the paediatric age group.AIMSTo determine neurone density, morphology, and nitric oxide synthase distribution of the normal myenteric plexus at different ages during infancy and childhood.METHODSSpecimens were obtained from small bowel and colon in 20 children, aged one day to 15 years, at postmortem examination. Whole mount preparations were made of the myenteric plexus, which were subsequently stained using NADPH diaphorase histochemistry (identical to nitric oxide synthase) and cuprolinic blue (a general neuronal marker). The morphology of the myenteric plexus was described and the neurone density estimated.RESULTSThe myenteric plexus meshwork becomes less dense during the first years of life. The density of ganglion cells in the myenteric plexus decreases significantly with age during the first three to four years of life. The NADPH diaphorase positive (nitrergic) subpopulation represents about 34% of all neurones in the myenteric plexus.CONCLUSIONSThe notable decrease in neurone density in the myenteric plexus during the first years of life indicates that development is still an ongoing process in the postnatal enteric nervous system. Applied to the clinical situation, this implies that interpretation of enteric nervous system pathology is dependent on the age of the patient.


Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4335-4347 ◽  
Author(s):  
A.J. Burns ◽  
N.M. Le Douarin

The majority of the enteric nervous system is derived from vagal neural crest cells (NCC), which migrate to the developing gut, proliferate, form plexuses and differentiate into neurons and glia. However, for some time, controversy has existed as to whether cells from the sacral region of the neural crest also contribute to the enteric nervous system. The aim of this study was to investigate the spatiotemporal migration of vagal and sacral NCC within the developing gut and to determine whether the sacral neural crest contributes neurons and glia to the ENS. We utilised quail-chick chimeric grafting in conjunction with antibody labelling to identify graft-derived cells, neurons and glia. We found that vagal NCC migrated ventrally within the embryo and accumulated in the caudal branchial arches before entering the pharyngeal region and colonising the entire length of the gut in a proximodistal direction. During migration, vagal crest cells followed different pathways depending on the region of the gut being colonised. In the pre-umbilical intestine, NCC were evenly distributed throughout the splanchnopleural mesenchyme while, in the post-umbilical intestine, they occurred adjacent to the serosal epithelium. Behind this migration front, NCC became organised into the presumptive Auerbach's and Meissner's plexuses situated on either side of the developing circular muscle layer. The colorectum was found to be colonised in a complex manner. Vagal NCC initially migrated within the submucosa, internal to the circular muscle layer, before migrating outwards, adjacent to blood vessels, towards the myenteric plexus region. In contrast, sacral NCC, which also formed the entire nerve of Remak, were primarily located in the presumptive myenteric plexus region and subsequently migrated inwards towards the submucosal ganglia. Although present throughout the post-umbilical gut, sacral NCC were most numerous in the distal colorectum where they constituted up to 17% of enteric neurons, as identified by double antibody labelling using the quail-cell-specific marker, QCPN and the neuron-specific marker, ANNA-1. Sacral NCC were also immunopositive for the glial-specific antibody, GFAP, thus demonstrating that this region of the neural crest contributes neurons and glia to the enteric nervous system.


Sign in / Sign up

Export Citation Format

Share Document