scholarly journals Increased Plasma Level of 24S-Hydroxycholesterol and Polymorphism of CYP46A1 SNP (rs754203) Are Associated With Mild Cognitive Impairment in Patients With Type 2 Diabetes

2021 ◽  
Vol 13 ◽  
Author(s):  
Jijing Shi ◽  
Jianhong Jia ◽  
Sai Tian ◽  
Haoqiang Zhang ◽  
Ke An ◽  
...  

BackgroundAbnormal cholesterol metabolism is common in type 2 diabetes mellitus (T2DM) and causes dementia. Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol (24-OHC) and maintains cholesterol homeostasis in the brain.ObjectiveThis study aimed to investigate the roles of 24-OHC and the CYP46A1 (rs754203) polymorphism in patients with T2DM and mild cognitive impairment (MCI).MethodsA total of 193 Chinese patients with T2DM were recruited into two groups according to the Montreal Cognitive Assessment (MoCA). Demographic and clinical data were collected, and neuropsychological tests were conducted. Enzyme-linked immunosorbent assay (ELISA) and Seqnome method were used to detect the concentration of plasma 24-OHC and the CYP46A1 rs754203 genotype, respectively.ResultsCompared with 118 healthy cognition participants, patients with MCI (n = 75) displayed a higher plasma level of 24-OHC and total cholesterol concentration (all p = 0.031), while no correlation was found between them. In the overall diabetes population, the plasma level of 24-OHC was negatively correlated with MoCA (r = −0.150, p = 0.039), and it was further proved to be an independent risk factor of diabetic MCI (OR = 1.848, p = 0.001). Additionally, patients with MCI and the CC genotype of CYP46A1 rs754203 showed the highest plasma level of 24-OHC even though the difference was not statistically significant, and they obtained low scores in both the verbal fluency test and Stroop color and word test A (p = 0.008 and p = 0.029, respectively).ConclusionIn patients with T2DM, high plasma level of 24-OHC and the CC genotype carrier of CYP46A1 rs754203 may portend a high risk of developing early cognitive impairment, including attention and executive deficits.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Dan Guo ◽  
Yang Yuan ◽  
Rong Huang ◽  
Sai Tian ◽  
Jiaqi Wang ◽  
...  

Abstract Background The adipokine adipsin contributes to insulin resistance (IR), inflammation, and obesity, which are all regarded as high-risk factors for mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus. This research aimed to uncover the role of adipsin in Chinese type 2 diabetes mellitus (T2DM) population with early cognitive dysfunction and determine whether adipsin contributes to diabetic MCI caused by IR. Methods In our study, 126 patients with T2DM were enrolled. The Montreal Cognitive Assessment (MoCA) was used to assess cognitive impairment. Demographic data and neuropsychological test results were evaluated. Plasma adipsin level was measured by enzyme-linked immunosorbent assay. Results The MCI group (n = 57) presented higher plasma adipsin levels compared with the healthy controls (p = 0.018). After adjustment for educational attainment, and age, begative correlations were found between plasma adipsin levels and MoCA, Mini Mental State Exam, and Verbal Fluency Test scores(r = − 0.640, p < 0.001; r = − 0.612, p < 0.001; r = − 0.288, p = 0.035; respectively). Correlation analysis demonstrated that adipsin levels were significantly positively correlated with fasting C-peptide; homeostasis model of assessment for insulin resistance (HOMA-IR) (r = 0.368, p < 0.001; r = 0.494, p < 0.001; respectively). Multivariable regression analysis further indicated that high plasma adipsin level was a significant independent determinant of MCI in the Chinese population withT2DM (p = 0.017). Conclusions Elevated plasma adipsin level was associated with MCI in Chinese T2DM patients. Further large-scale studies should be designed to determine whether adipsin is linked to IR-associated susceptibility to early cognitive decline in T2DM patients.


2019 ◽  
Vol Volume 15 ◽  
pp. 167-175 ◽  
Author(s):  
Oana Albai ◽  
Mirela Frandes ◽  
Romulus Timar ◽  
Deiana Roman ◽  
Bogdan Timar

2021 ◽  
pp. 1-11
Author(s):  
Roni Lotan ◽  
Ithamar Ganmore ◽  
Abigail Livny ◽  
Nofar Itzhaki ◽  
Mark Waserman ◽  
...  

Background: Dietary advanced glycation end-products (AGEs) are linked to cognitive decline. However, clinical trials have not tested the effect of AGEs on cognition in older adults. Objective: The aim of the current pilot trial was to examine the feasibility of an intervention to reduce dietary AGEs on cognition and on cerebral blood flow (CBF). Methods: The design is a pilot randomized controlled trial of dietary AGEs reduction in older adults with type 2 diabetes. Seventy-five participants were randomized to two arms. The control arm received standard of care (SOC) guidelines for good glycemic control; the intervention arm, in addition to SOC guidelines, were instructed to reduce their dietary AGEs intake. Global cognition and CBF were assessed at baseline and after 6 months of intervention. Results: At baseline, we found a reverse association between AGEs and cognitive functioning, possibly reflecting the long-term toxicity of AGEs on the brain. There was a significant improvement in global cognition at 6 months in both the intervention and SOC groups which was more prominent in participants with mild cognitive impairment. We also found that at baseline, higher AGEs were associated with increased CBF in the left inferior parietal cortex; however, 6 months of the AGEs lowering intervention did not affect CBF levels, despite lowering AGEs exposure in blood. Conclusion: The current pilot trial focused on the feasibility and methodology of intervening through diet to reduce AGEs in older adults with type 2 diabetes. Our results suggest that participants with mild cognitive impairment may benefit from an intensive dietary intervention.


Sign in / Sign up

Export Citation Format

Share Document