scholarly journals Electrophysiological Properties of Substantia Gelatinosa Neurons in the Preparation of a Slice of Middle-Aged Rat Spinal Cord

2021 ◽  
Vol 13 ◽  
Author(s):  
Yang Li ◽  
Shanchu Su ◽  
Jiaqi Yu ◽  
Minjing Peng ◽  
Shengjun Wan ◽  
...  

A patch-clamp recording in slices generated from the brain or the spinal cord has facilitated the exploration of neuronal circuits and the molecular mechanisms underlying neurological disorders. However, the rodents that are used to generate the spinal cord slices in previous studies involving a patch-clamp recording have been limited to those in the juvenile or adolescent stage. Here, we applied an N-methyl-D-glucamine HCl (NMDG-HCl) solution that enabled the patch-clamp recordings to be performed on the superficial dorsal horn neurons in the slices derived from middle-aged rats. The success rate of stable recordings from substantia gelatinosa (SG) neurons was 34.6% (90/260). When stimulated with long current pulses, 43.3% (39/90) of the neurons presented a tonic-firing pattern, which was considered to represent γ-aminobutyric acid-ergic (GABAergic) signals. Presumptive glutamatergic neurons presented 38.9% (35/90) delayed and 8.3% (7/90) single-spike patterns. The intrinsic membrane properties of both the neuron types were similar but delayed (glutamatergic) neurons appeared to be more excitable as indicated by the decreased latency and rheobase values of the action potential compared with those of tonic (GABAergic) neurons. Furthermore, the glutamatergic neurons were integrated, which receive more excitatory synaptic transmission. We demonstrated that the NMDG-HCl cutting solution could be used to prepare the spinal cord slices of middle-aged rodents for the patch-clamp recording. In combination with other techniques, this preparation method might permit the further study of the functions of the spinal cord in the pathological processes that occur in aging-associated diseases.

2016 ◽  
Vol 12 ◽  
pp. 174480691666582 ◽  
Author(s):  
Yuji Kozuka ◽  
Mikito Kawamata ◽  
Hidemasa Furue ◽  
Takashi Ishida ◽  
Satoshi Tanaka ◽  
...  

2012 ◽  
Vol 90 (6) ◽  
pp. 783-790
Author(s):  
Van B. Lu ◽  
Peter A. Smith ◽  
Saifee Rashiq

Changes in central neural processing are thought to contribute to the development of chronic osteoarthritis pain. This may be reflected as the presence of inflammatory mediators in the cerebral spinal fluid (CSF). We therefore exposed organotypically cultured slices of rat spinal cord to CSF from human subjects with osteoarthritis (OACSF) at a ratio of 1 part CSF in 9 parts culture medium for 5–6 days, and measured changes in neuronal electrophysiological properties by means of whole-cell recording. Although OACSF had no effect on the membrane properties and excitability of neurons in the substantia gelatinosa, synaptic transmission was clearly altered. The frequency of spontaneous excitatory postsynaptic currents (sEPSC) in delay-firing putative excitatory neurons was increased, as was sEPSC amplitude and frequency in tonic-firing inhibitory neurons. These changes could affect sensory processing in the dorsal horn, and may affect the transfer of nociceptive information. Although OACSF also affected inhibitory synaptic transmission (frequency of spontaneous inhibitory synaptic currents; sIPSC), this may have little bearing on sensory processing by substantia gelatinosa neurons, as sEPSC frequency is >3× greater than sIPSC frequency in this predominantly excitatory network. These results support the clinical notion that changes in nociceptive processing at the spinal level contribute to the generation of chronic osteoarthritis pain.


2010 ◽  
Vol 190 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Anders Sonne Munch ◽  
Morten Smith ◽  
Mihai Moldovan ◽  
Jean-François Perrier

Pain ◽  
2011 ◽  
Vol 152 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Wataru Taniguchi ◽  
Terumasa Nakatsuka ◽  
Nobuyuki Miyazaki ◽  
Hiroshi Yamada ◽  
Daisuke Takeda ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125147 ◽  
Author(s):  
Hiroyuki Yamasaki ◽  
Yusuke Funai ◽  
Tomoharu Funao ◽  
Takashi Mori ◽  
Kiyonobu Nishikawa

2008 ◽  
Vol 100 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Kimberly J. Dougherty ◽  
Shawn Hochman

Dysfunction of the spinal GABAergic system has been implicated in pain syndromes following spinal cord injury (SCI). Since lamina I is involved in nociceptive and thermal signaling, we characterized the effects of chronic SCI on the cellular properties of its GABAergic neurons fluorescently identified in spinal slices from GAD67-GFP transgenic mice. Whole cell recordings were obtained from the lumbar cord of 13- to 17-day-old mice, including those having had a thoracic segment (T8-11) removed 6–9 days prior to experiments. Following chronic SCI, the distribution, incidence, and firing classes of GFP+ cells remained similar to controls, and there were minimal changes in membrane properties in cells that responded to current injection with a single spike. In contrast, cells displaying tonic/initial burst firing had more depolarized membrane potentials, increased steady-state outward currents, and increased spike heights. Moreover, higher firing frequencies and spontaneous plateau potentials were much more prevalent after chronic SCI, and these changes occurred predominantly in cells displaying a tonic firing pattern. Persistent inward currents (PICs) were observed in a similar fraction of cells from spinal transects and may have contributed to these plateaus. Persistent Na+ and L-type Ca2+ channels likely contributed to the currents as both were identified pharmacologically. In conclusion, chronic SCI induces a plastic response in a subpopulation of lamina I GABAergic interneurons. Alterations are directed toward amplifying neuronal responsiveness. How these changes alter spinal sensory integration and whether they contribute to sensory dysfunction remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document