scholarly journals Functional Integrity of Executive Control Network Contributed to Retained Executive Abilities in Mild Cognitive Impairment

2021 ◽  
Vol 13 ◽  
Author(s):  
Wan Liu ◽  
Li Liu ◽  
Xinxin Cheng ◽  
Honglin Ge ◽  
Guanjie Hu ◽  
...  

Background: Mild cognitive impairment (MCI) is considered to be a transitional state between normal aging and Alzheimer's dementia (AD). Recent studies have indicated that executive function (EF) declines during MCI. However, only a limited number of studies have investigated the neural basis of EF deficits in MCI. Herein, we investigate the changes of regional brain spontaneous activity and functional connectivity (FC) of the executive control network (ECN) between high EF and low EF groups.Methods: According to EF composite score (ADNI-EF) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we divided MCI into two groups, including the MCI-highEF group and MCI-lowEF group. Resting-state functional MRI was utilized to investigate the fractional amplitude of low-frequency fluctuation (fALFF) and ECN functional connectivity across 23 healthy controls (HC), 11 MCI-highEF, and 14 MCI-lowEF participants. Moreover, a partial correlation analysis was carried out to examine the relationship between altered fALFF or connectivity of the ECN and the ADNI-EF.Results: Compared to HC, the MCI-highEF participants demonstrated increased fALFF in the left superior temporal gyrus (STG), as well as decreased fALFF in the right precentral gyrus, right postcentral gyrus, and left middle frontal gyrus (MFG). The MCI-lowEF participants demonstrated increased fALFF in the cerebellar vermis and decreased fALFF in the left MFG. Additionally, compared to HC, the MCI-highEF participants indicated no significant difference in connectivity of the ECN. Furthermore, the MCI-lowEF participants showed increased ECN FC in the left cuneus and left MFG, as well as decreased ECN functional connectivity in the right parahippocampal gyrus (PHG). Notably, the altered fALFF in the left MFG was positively correlated to ADNI-EF, while the altered fALFF in cerebellar vermis is negatively correlated with ADNI-EF across the two MCI groups and the HC group. Altered ECN functional connectivity in the right PHG is negatively correlated to ADNI-EF, while altered ECN functional connectivity in the left cuneus is negatively correlated to ADNI-EF across the three groups.Conclusions: Our current study demonstrates the presence of different patterns of regional brain spontaneous activity and ECN FC in the MCI-highEF group and MCI-lowEF group. Furthermore, the ECN FC of the MCI-highEF group was not disrupted, which may contribute to retained EF in MCI.

CNS Spectrums ◽  
2017 ◽  
Vol 23 (5) ◽  
pp. 300-310 ◽  
Author(s):  
Lingxiao Wang ◽  
Yifen Zhang ◽  
Xiao Lin ◽  
Hongli Zhou ◽  
Xiaoxia Du ◽  
...  

ObjectivePrevious studies have demonstrated that individuals with Internet gaming disorder (IGD) showed attentional bias toward gaming-related cues and exhibited impaired executive functions. The purpose of this study was to explore the alternations in related functional brain networks underlying attentional bias in IGD subjects.MethodsEighteen IGD subjects and 19 healthy controls (HC) were scanned with functional magnetic resonance imaging while they were performing an addiction Stroop task. Networks of functional connectivity were identified using group independent component analysis (ICA).ResultsICA identified 4 functional networks that showed differences between the 2 groups, which were related to the right executive control network and visual related networks in our study. Within the right executive control network, in contrast to controls, IGD subjects showed increased functional connectivity in the temporal gyrus and frontal gyrus, and reduced functional connectivity in the posterior cingulate cortex, temporal gyrus, and frontal gyrus.ConclusionThese findings suggest that IGD is related to abnormal functional connectivity of the right executive control network, and may be described as addiction-related abnormally increased cognitive control processing and diminished response inhibition during an addiction Stroop task. The results suggest that IGD subjects show increased susceptibility towards gaming-related cues but weakened strength of inhibitory control.


2013 ◽  
Vol 9 ◽  
pp. P420-P422
Author(s):  
Liyong Wu ◽  
Ricardo Soder ◽  
Dorothee Schoemaker ◽  
Felix Carbonnell ◽  
Viviane Sziklas ◽  
...  

2014 ◽  
Vol 40 (4) ◽  
pp. 993-1004 ◽  
Author(s):  
Liyong Wu ◽  
Ricardo Bernardi Soder ◽  
Dorothée Schoemaker ◽  
Felix Carbonnell ◽  
Viviane Sziklas ◽  
...  

2019 ◽  
Author(s):  
Miao Yu ◽  
Yi B. Liu ◽  
Guang Yang

AbstractThe purpose of the study was to investigate the executive control network function characteristics of interceptive and strategic sports athletes from open skill sports. In order to do so, we used a revised lateralized attention network task to measure executive control efficiency and activation related to flanker interference changes on the right frontoparietal network using functional near-infrared spectroscopy in athletes from different sport sub-categories. Strategic athletes had higher accuracy and lower flanker conflict effects on accuracy, as well as longer reaction time and stronger conflict effects under the valid cue and invalid cue conditions. This was accompanied by higher activity in the right inferior frontal gyrus. These results extend the evidence suggesting that differences among interceptive sports and strategic sports athletes are due to the former using higher velocities to solve conflicts, and the latter using higher accuracy in the same tasks. These effects are attributed to differences in the right frontoparietal network.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yifan Li ◽  
Mingrui Li ◽  
Yue Feng ◽  
Xiaomeng Ma ◽  
Xin Tan ◽  
...  

Objective: We aimed to explore whether the percent amplitude of fluctuation (PerAF) measurement could provide supplementary information for amplitude of low-frequency fluctuation (ALFF) about spontaneous activity alteration in type 2 diabetes mellitus (T2DM) subjects without mild cognitive impairment (MCI). Then we further evaluated the synchronization through the method of functional connectivity (FC) to better demonstrate brain changes in a more comprehensive manner in T2DM.Methods: Thirty T2DM subjects without MCI and thirty well-matched healthy subjects were recruited in this study. Subjects’ clinical data, neuropsychological test results, and resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired. Voxel-based group difference comparisons between PerAF and ALFF were conducted. Then, seed-based FC between the recognized brain regions based on PerAF and ALFF and the rest of the whole brain was performed.Results: Compared with healthy group, T2DM group had significantly decreased PerAF in the bilateral middle occipital gyrus and the right calcarine, increased ALFF in the right orbital inferior frontal gyrus and decreased ALFF in the right calcarine. Seed-based FC analysis showed that the right middle occipital gyrus of T2DM subjects exhibited significantly decreased FC with the right caudate nucleus and right putamen. According to the partial correlation analyses, hemoglobin A1c (HbA1c) and immediate memory scores on the auditory verbal learning test (AVLT) were negatively correlated in the T2DM group. However, we found that total cholesterol was positively correlated with symbol digit test (SDT) scores.Conclusion: PerAF and ALFF may have different sensitivities in detecting the abnormal spontaneous brain activity in T2DM subjects. We suggest PerAF values may add supplementary information and indicate additional potential neuronal spontaneous activity in T2DM subjects without MCI, which may provide new insights into the neuroimaging mechanisms underlying early diabetes-associated cognitive decline.


2020 ◽  
Author(s):  
Dillan J. Newbold ◽  
Evan M. Gordon ◽  
Timothy O. Laumann ◽  
Nicole A. Seider ◽  
David F. Montez ◽  
...  

AbstractWhole-brain resting-state functional MRI (rs-fMRI) during two weeks of limb constraint revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula (1). Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.SignificanceMany studies have examined plasticity in the primary somatosensory and motor cortex during disuse, but little is known about how disuse impacts the brain outside of primary cortical areas. We leveraged the whole-brain coverage of resting-state functional MRI (rs-fMRI) to discover that disuse drives plasticity of distant executive control regions in the cingulo-opercular network (CON). Two complementary analyses, pulse censoring and pulse addition, demonstrated that increased functional connectivity between the CON and disused motor regions was driven by large, spontaneous pulses of activity in the CON and disused motor regions. These results point to a previously unknown role for the CON in supporting motor plasticity and reveal spontaneous activity pulses as a novel mechanism for reorganizing the brain’s functional connections.


2019 ◽  
Vol 1452 (1) ◽  
pp. 52-64 ◽  
Author(s):  
Dana Son ◽  
Mischa Rover ◽  
Frances M. De Blasio ◽  
Willem Does ◽  
Robert J. Barry ◽  
...  

2017 ◽  
Vol 79 (6) ◽  
pp. 674-683 ◽  
Author(s):  
Adrienne A. Taren ◽  
Peter J. Gianaros ◽  
Carol M. Greco ◽  
Emily K. Lindsay ◽  
April Fairgrieve ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document