group independent component analysis
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol 13 ◽  
Author(s):  
Chunhua Xing ◽  
Yu-Chen Chen ◽  
Song’an Shang ◽  
Jin-Jing Xu ◽  
Huiyou Chen ◽  
...  

Aim: This study aimed to investigate abnormal static and dynamic functional network connectivity (FNC) and its association with cognitive function in patients with presbycusis.Methods: In total, 60 patients with presbycusis and 60 age-, sex-, and education-matched healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and cognitive assessments. Group independent component analysis (ICA) was carried out on the rs-fMRI data, and eight resting-state networks (RSNs) were identified. Static and dynamic FNCs (sFNC and dFNC) were then constructed to evaluate differences in RSN connectivity between the patients with presbycusis and the HCs. Furthermore, the correlations between these differences and cognitive scores were analyzed.Results: Patients with presbycusis had differences in sFNC compared with HCs, mainly reflected in decreased sFNC in the default mode network (DMN)-left frontoparietal network (LFPN) and attention network (AN)-cerebellum network (CN) pairs, but they had increased sFNC in the auditory network (AUN) between DMN domains. The decreased sFNC in the DMN-LFPN pair was negatively correlated with their TMT-B score (r = –0.441, p = 0.002). Patients with presbycusis exhibited aberrant dFNCs in State 2 and decreased dFNCs between the CN and AN and the visual network (VN). Moreover, the presbycusis group had a shorter mean dwell time (MDT) and fraction time (FT) in State 3 (p = 0.0027; p = 0.0031, respectively).Conclusion: This study highlighted differences in static and dynamic functional connectivity in patients with presbycusis and suggested that FNC may serve as an important biomarker of cognitive performance since abnormal alterations can better track cognitive impairment in presbycusis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Can Zeng ◽  
Brendan Ross ◽  
Zhimin Xue ◽  
Xiaojun Huang ◽  
Guowei Wu ◽  
...  

Introduction: Previous studies have primarily focused on the neuropathological mechanisms of the emotional circuit present in bipolar mania and bipolar depression. Recent studies applying resting-state functional magnetic resonance imaging (fMRI) have raise the possibility of examining brain-wide networks abnormality between the two oppositional emotion states, thus this study aimed to characterize the different functional architecture represented in mania and depression by employing group-independent component analysis (gICA).Materials and Methods: Forty-one bipolar depressive patients, 20 bipolar manic patients, and 40 healthy controls (HCs) were recruited and received resting-state fMRI scans. Group-independent component analysis was applied to the brain network functional connectivity analysis. Then, we calculated the correlation between the value of between-group differences and clinical variables.Results: Group-independent component analysis identified 15 components in all subjects, and ANOVA showed that functional connectivity (FC) differed significantly in the default mode network, central executive network, and frontoparietal network across the three groups. Further post-hoc t-tests showed a gradient descent of activity—depression > HC > mania—in all three networks, with the differences between depression and HCs, as well as between depression and mania, surviving after family wise error (FWE) correction. Moreover, central executive network and frontoparietal network activities were positively correlated with Hamilton depression rating scale (HAMD) scores and negatively correlated with Young manic rating scale (YMRS) scores.Conclusions: Three brain networks heighten activity in depression, but not mania; and the discrepancy regions mainly located in prefrontal, which may imply that the differences in cognition and emotion between the two states is associated with top–down regulation in task-independent networks.


2020 ◽  
Vol 30 (11) ◽  
pp. 5639-5653 ◽  
Author(s):  
Gina F Humphreys ◽  
Rebecca L Jackson ◽  
Matthew A Lambon Ralph

Abstract The parietal cortex (PC) is implicated in a confusing myriad of different cognitive processes/tasks. Consequently, understanding the nature and organization of the core underlying neurocomputations is challenging. According to the Parietal Unified Connectivity-biased Computation model, two properties underpin PC function and organization. Firstly, PC is a multidomain, context-dependent buffer of time- and space-varying input, the function of which, over time, becomes sensitive to the statistical temporal/spatial structure of events. Secondly, over and above this core buffering computation, differences in long-range connectivity will generate graded variations in task engagement across subregions. The current study tested these hypotheses using a group independent component analysis technique with two independent functional magnetic resonance imaging datasets (task and resting state data). Three functional organizational principles were revealed: Factor 1, inferior PC was sensitive to the statistical structure of sequences for all stimulus types (pictures, sentences, numbers); Factor 2, a dorsal–ventral variation in generally task-positive versus task-negative (variable) engagement; and Factor 3, an anterior–posterior dimension in inferior PC reflecting different engagement in verbal versus visual tasks, respectively. Together, the data suggest that the core neurocomputation implemented by PC is common across domains, with graded task engagement across regions reflecting variations in the connectivity of task-specific networks that interact with PC.


2019 ◽  
Vol 14 (9) ◽  
pp. 933-945
Author(s):  
Thomas J Vanasse ◽  
Crystal Franklin ◽  
Felipe S Salinas ◽  
Amy E Ramage ◽  
Vince D Calhoun ◽  
...  

Abstract Resting-state functional connectivity (rsFC) is an emerging means of understanding the neurobiology of combat-related post-traumatic stress disorder (PTSD). However, most rsFC studies to date have limited focus to cognitively related intrinsic connectivity networks (ICNs), have not applied data-driven methodologies or have disregarded the effect of combat exposure. In this study, we predicted that group independent component analysis (GICA) would reveal group-wise differences in rsFC across 50 active duty service members with PTSD, 28 combat-exposed controls (CEC), and 25 civilian controls without trauma exposure (CC). Intranetwork connectivity differences were identified across 11 ICNs, yet combat-exposed groups were indistinguishable in PTSD vs CEC contrasts. Both PTSD and CEC demonstrated anatomically diffuse differences in the Auditory Vigilance and Sensorimotor networks compared to CC. However, intranetwork connectivity in a subset of three regions was associated with PTSD symptom severity among executive (left insula; ventral anterior cingulate) and right Fronto-Parietal (perigenual cingulate) networks. Furthermore, we found that increased temporal synchronization among visuospatial and sensorimotor networks was associated with worse avoidance symptoms in PTSD. Longitudinal neuroimaging studies in combat-exposed cohorts can further parse PTSD-related, combat stress-related or adaptive rsFC changes ensuing from combat.


CNS Spectrums ◽  
2017 ◽  
Vol 23 (5) ◽  
pp. 300-310 ◽  
Author(s):  
Lingxiao Wang ◽  
Yifen Zhang ◽  
Xiao Lin ◽  
Hongli Zhou ◽  
Xiaoxia Du ◽  
...  

ObjectivePrevious studies have demonstrated that individuals with Internet gaming disorder (IGD) showed attentional bias toward gaming-related cues and exhibited impaired executive functions. The purpose of this study was to explore the alternations in related functional brain networks underlying attentional bias in IGD subjects.MethodsEighteen IGD subjects and 19 healthy controls (HC) were scanned with functional magnetic resonance imaging while they were performing an addiction Stroop task. Networks of functional connectivity were identified using group independent component analysis (ICA).ResultsICA identified 4 functional networks that showed differences between the 2 groups, which were related to the right executive control network and visual related networks in our study. Within the right executive control network, in contrast to controls, IGD subjects showed increased functional connectivity in the temporal gyrus and frontal gyrus, and reduced functional connectivity in the posterior cingulate cortex, temporal gyrus, and frontal gyrus.ConclusionThese findings suggest that IGD is related to abnormal functional connectivity of the right executive control network, and may be described as addiction-related abnormally increased cognitive control processing and diminished response inhibition during an addiction Stroop task. The results suggest that IGD subjects show increased susceptibility towards gaming-related cues but weakened strength of inhibitory control.


2017 ◽  
Vol 37 (12) ◽  
pp. 3659-3670 ◽  
Author(s):  
Dardo G Tomasi ◽  
Ehsan Shokri-Kojori ◽  
Corinde E Wiers ◽  
Sunny W Kim ◽  
Şukru B Demiral ◽  
...  

It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[18F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173496 ◽  
Author(s):  
Shaojie Chen ◽  
Lei Huang ◽  
Huitong Qiu ◽  
Mary Beth Nebel ◽  
Stewart H. Mostofsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document