scholarly journals Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders

2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.

2010 ◽  
Vol 21 (5-6) ◽  
pp. 394-408 ◽  
Author(s):  
Cláudia P. Figueiredo ◽  
Fabrício A. Pamplona ◽  
Tânia L. Mazzuco ◽  
Aderbal S. Aguiar ◽  
Roger Walz ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 404-414
Author(s):  
O. N. Voskresenskaya ◽  
V. O. Bitsadze ◽  
J. Kh. Khizroeva ◽  
T. A. Sukontseva ◽  
M. V. Tretyakova ◽  
...  

Antiphospholipid syndrome (APS) is an autoimmune process that increases the risk of arterial and venous thrombosis. The mechanism of damage to the central nervous system (CNS) can be not only due to thrombosis, but also antiphospholipid antibodies (APA) circulating in the peripheral blood. The latter can damage the cerebral vascular endothelium, alter the resistance of the blood-brain barrier and penetrate into the central nervous system, exerting a damaging effect on astroglia and neurons, as evidenced by the release of neurospecific proteins into the peripheral bloodstream. The role of APS in developing cerebral ischemia, migraine, epilepsy, chorea, transverse myelitis, multiple sclerosis, cognitive impairment and mental disorders, as well as the peripheral nervous system is described. It should also be noted about a role of APS for emerging neurological disorders in COVID-19, enabled apart from thrombogenesis due to APA via 2 potential mechanisms - molecular mimicry and neoepitope formation. Further study of the APS pathogenesis and interdisciplinary interaction are necessary to develop effective methods for patient management.


Author(s):  
Agnieszka Piechal ◽  
Alicja Jakimiuk ◽  
Dagmara Mirowska-Guzel

AbstarctSigma receptors were identified relatively recently, and their presence has been confirmed in the central nervous system and peripheral organs. Changes in sigma receptor function or expression may be involved in neurological diseases, and thus sigma receptors represent a potential target for treating central nervous system disorders. Many substances that are ligands for sigma receptors are widely used in therapies for neurological disorders. In the present review, we discuss the roles of sigma receptors, especially in the central nervous system disorders, and related therapies. Graphic abstract


2021 ◽  
Vol 15 ◽  
Author(s):  
Lu Cao ◽  
Yanbo Zhou ◽  
Mengguang Chen ◽  
Li Li ◽  
Wei Zhang

Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Juárez-Rebollar ◽  
Camilo Rios ◽  
Concepción Nava-Ruíz ◽  
Marisela Méndez-Armenta

Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.


2019 ◽  
Vol 216 (10) ◽  
pp. 2223-2225 ◽  
Author(s):  
Katrin Kierdorf ◽  
Marco Prinz

Microglial identity in the central nervous system (CNS) is dependent on colony stimulating factor 1 receptor (CSF-1R) signaling and its ligands IL-34 and colony stimulating factor 1 (CSF-1). In this issue of JEM, Kana et al. (https://doi.org/10.1084/jem.20182037) make the important discovery that CSF-1, but not IL-34, orchestrates cerebellar microglial homeostasis in mice, and its deficiency resulted in severe cerebellar dysfunctions accompanied by defects in motor function and social behavior.


Sign in / Sign up

Export Citation Format

Share Document