Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases

2010 ◽  
Vol 21 (5-6) ◽  
pp. 394-408 ◽  
Author(s):  
Cláudia P. Figueiredo ◽  
Fabrício A. Pamplona ◽  
Tânia L. Mazzuco ◽  
Aderbal S. Aguiar ◽  
Roger Walz ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1567
Author(s):  
Sangiliyandi Gurunathan ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.


2014 ◽  
Vol 34 (3) ◽  
pp. 369-375 ◽  
Author(s):  
Juan Pablo de Rivero Vaccari ◽  
W Dalton Dietrich ◽  
Robert W Keane

The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1 β (IL-1 β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma.


2020 ◽  
Vol 18 (9) ◽  
pp. 861-867
Author(s):  
Kai Chen ◽  
Liu Nan Yang ◽  
Chuan Lai ◽  
Dan Liu ◽  
Ling-Qiang Zhu

Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of GRINA has been reported in multiple diseases in human beings, such as major depressive disorder (MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this review, we provide a general overview of the expression and physiological function of GRINA in the central nervous system (CNS) diseases, including stroke, depression ,epilepsy, SCZ, and Alzheimer’s disease (AD).


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Bangrong Cai ◽  
Ying Zhang ◽  
Zengtao Wang ◽  
Dujuan Xu ◽  
Yongyan Jia ◽  
...  

Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson’s disease, Alzheimer’s disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyi Wang ◽  
Zhe Hu ◽  
Kai Zhong

Epilepsy, which is characterized by spontaneous recurrent seizures, is one of the most common and serious chronic neurological diseases in the world. 30% patients failed to control seizures with multiple anti-seizure epileptic drugs, leading to serious outcomes. The pathogenesis of epilepsy is very complex and remains unclear. Brain-derived neurotrophic factor (BDNF), as a member of the neurotrophic factor family, is considered to play an important role in the survival, growth and differentiation of neurons during the development of the central nervous system. Recent years, a series of studies have reported that BDNF can maintain the function of the nervous system and promotes the regeneration of neurons after injury, which is believed to be closely related to epileptogenesis. However, two controversial views (BDNF inhibits or promotes epileptogenesis) still exist. Thus, this mini-review focuses on updating the new evidence of the role of BDNF in epileptogenesis and discussing the possibility of BDNF as an underlying target for the treatment of epilepsy.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


Sign in / Sign up

Export Citation Format

Share Document