scholarly journals Pericytes for Therapeutic Approaches to Ischemic Stroke

2021 ◽  
Vol 15 ◽  
Author(s):  
Lu Cao ◽  
Yanbo Zhou ◽  
Mengguang Chen ◽  
Li Li ◽  
Wei Zhang

Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.

2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2021 ◽  
Vol 15 (4) ◽  
pp. 404-414
Author(s):  
O. N. Voskresenskaya ◽  
V. O. Bitsadze ◽  
J. Kh. Khizroeva ◽  
T. A. Sukontseva ◽  
M. V. Tretyakova ◽  
...  

Antiphospholipid syndrome (APS) is an autoimmune process that increases the risk of arterial and venous thrombosis. The mechanism of damage to the central nervous system (CNS) can be not only due to thrombosis, but also antiphospholipid antibodies (APA) circulating in the peripheral blood. The latter can damage the cerebral vascular endothelium, alter the resistance of the blood-brain barrier and penetrate into the central nervous system, exerting a damaging effect on astroglia and neurons, as evidenced by the release of neurospecific proteins into the peripheral bloodstream. The role of APS in developing cerebral ischemia, migraine, epilepsy, chorea, transverse myelitis, multiple sclerosis, cognitive impairment and mental disorders, as well as the peripheral nervous system is described. It should also be noted about a role of APS for emerging neurological disorders in COVID-19, enabled apart from thrombogenesis due to APA via 2 potential mechanisms - molecular mimicry and neoepitope formation. Further study of the APS pathogenesis and interdisciplinary interaction are necessary to develop effective methods for patient management.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Juárez-Rebollar ◽  
Camilo Rios ◽  
Concepción Nava-Ruíz ◽  
Marisela Méndez-Armenta

Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142098118
Author(s):  
Alexander D. Walsh ◽  
Linda T. Nguyen ◽  
Michele D. Binder

Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1437
Author(s):  
Bianca Vezzani ◽  
Marianna Carinci ◽  
Simone Patergnani ◽  
Matteo P. Pasquin ◽  
Annunziata Guarino ◽  
...  

Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4630
Author(s):  
Agnieszka Kulczyńska-Przybik ◽  
Piotr Mroczko ◽  
Maciej Dulewicz ◽  
Barbara Mroczko

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


2021 ◽  
Vol 22 ◽  
Author(s):  
Farheen Danish ◽  
Md. Asad Khan ◽  
Ghulam Md Ashraf ◽  
Anwar L. Bilgrami ◽  
M. Moshahid A. Rizvi

: Neurological disorders, such as epilepsy, dementia, Parkinson’s disease, and Alzheimer’s disease, occur due to disorganization of the neurons in the nervous system. Disturbances in the nervous system cause problems with memory, senses and moods. In order to treat such disorders, scientists have been working extensively by using different approaches. Nanoneurotechnology has emerged as a promising tool to manage these complicated disorders, where nanoparticles with their tunable properties such as size, shape, increased solubility, biodegradability, surface area and sharp penetration through the biological barriers target the central nervous system. This technology targets damaged neurons without affecting healthy neurons and Blood-Brain Barrier (BBB). In this review, we discuss neurological disorders and challenges in the diagnosis and treatment of neurological disorders by emphasizing the role of tailorable gold nanoparticles for therapeutic drug approaches.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1168
Author(s):  
Deokho Lee ◽  
Yohei Tomita ◽  
William Allen ◽  
Kazuo Tsubota ◽  
Kazuno Negishi ◽  
...  

The burden of neurodegenerative diseases in the central nervous system (CNS) is increasing globally. There are various risk factors for the development and progression of CNS diseases, such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard, PPARs have recently been suggested as promising therapeutic targets for suppressing the development of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα for the prevention of and protection from various CNS diseases.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Arash Abdolmaleki ◽  
Sevin Ferdowsi ◽  
Asadollah Asadi ◽  
Yassin Panahi

Context: Neurodegenerative diseases (NDs) are neurological disorders characterized by the degeneration of the central nervous system (CNS). Studies have examined interactions between long non-coding RNAs (lncRNAs) and functioning of the CNS in NDs. In this study, we summarized the role of different lncRNAs in most NDs. Methods: In this study, different papers published between years 2003 and 2020 were reviewed. Results: LncRNAs can play a significant role in the development of brain disorders. Conclusions: The dysregulation of lncRNAs has been shown to affect NDs such as Alzheimer's disease (AD) and Parkinson’s diseases (PD). In this review, we compiled recent findings related to the main lncRNAs associated with brain disorders.


Sign in / Sign up

Export Citation Format

Share Document