scholarly journals Sleep Facilitates Problem Solving With No Additional Gain Through Targeted Memory Reactivation

2021 ◽  
Vol 15 ◽  
Author(s):  
Felipe Beijamini ◽  
Anthony Valentin ◽  
Roland Jäger ◽  
Jan Born ◽  
Susanne Diekelmann

According to the active systems consolidation theory, memories undergo reactivation during sleep that can give rise to qualitative changes of the representations. These changes may generate new knowledge such as gaining insight into solutions for problem solving. targeted memory reactivation (TMR) uses learning-associated cues, such as sounds or odors, which have been shown to improve memory consolidation when re-applied during sleep. Here we tested whether TMR during slow wave sleep (SWS) and/or rapid eye movement (REM) sleep increases problem solving. Young healthy volunteers participated in one of two experiments. Experiment 1 tested the effect of natural sleep on problem solving. Subjects were trained in a video game-based problem solving task until being presented with a non-solved challenge. Followed by a ~10-h incubation interval filled with nocturnal sleep or daytime wakefulness, subjects were tested on the problem solving challenge again. Experiment 2 tested the effect of TMR on problem solving, with subjects receiving auditory TMR either during SWS (SWSstim), REM sleep (REMstim), or wakefulness (Wakestim). In Experiment 1, sleep improved problem solving, with 62% of subjects from the Sleep group solving the problem compared to 24% of the Wake group. Subjects with higher amounts of SWS in the Sleep group had a higher chance to solve the problem. In Experiment 2, TMR did not change the sleep effect on problem solving: 56 and 58% of subjects from the SWSstim and REMstim groups solved the problem compared to 57% from the Wakestim group. These findings indicate that sleep, and particularly SWS, facilitates problem solving, whereas this effect is not further increased by TMR.

2021 ◽  
Author(s):  
Adrianna M Bassard ◽  
Ken A Paller

Sleep, especially slow-wave sleep (SWS), has been found to facilitate memory consolidation for many types of learning. Mathematical learning, however, has seldom been examined in this context. Solving multiplication problems involves multiple steps before problems can be mastered or answers memorized, and thus it can depend on both skill learning and fact learning. Here we aimed to test the hypothesis that memory reactivation during sleep contributes to multiplication learning. To do so, we used a technique known as targeted memory reactivation (TMR), or the pairing of newly learned information with specific stimuli that are later presented during sleep. With TMR, specific memories can be reactivated over a period of sleep without disrupting ongoing sleep. We applied TMR during an afternoon nap to reactivate half of the multiplication problems that had previously been practiced. Results showed no effect of TMR on response time or accuracy of multiplication problem solving. Because these results were unexpected, we also used a variation of this paradigm to examine results in subjects who remained awake. Comparisons between the wake and sleep groups showed no difference in response time or accuracy in either the initial test or the final test. Although neither TMR nor sleep differentially influenced multiplication performance, correlational analysis provided some clues about mathematical problem solving and sleep. On the basis of these findings, even though they did not provide convincing support for our hypotheses, we suggest future experiments that could help produce a better understanding of the relevance of sleep and memory reactivation for this type of learning.


2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


Author(s):  
K. Werner ◽  
M. Raab

Embodied cognition theories suggest a link between bodily movements and cognitive functions. Given such a link, it is assumed that movement influences the two main stages of problem solving: creating a problem space and creating solutions. This study explores how specific the link between bodily movements and the problem-solving process is. Seventy-two participants were tested with variations of the two-string problem (Experiment 1) and the water-jar problem (Experiment 2), allowing for two possible solutions. In Experiment 1 participants were primed with arm-swing movements (swing group) and step movements on a chair (step group). In Experiment 2 participants sat in front of three jars with glass marbles and had to sort these marbles from the outer jars to the middle one (plus group) or vice versa (minus group). Results showed more swing-like solutions in the swing group and more step-like solutions in the step group, and more addition solutions in the plus group and more subtraction solutions in the minus group. This specificity of the connection between movement and problem-solving task will allow further experiments to investigate how bodily movements influence the stages of problem solving.


2005 ◽  
Author(s):  
Rolf Reber ◽  
Marie-Antoinette Ruch-Monachon ◽  
Walter J. Perrig

Author(s):  
Marcus O. Harrington ◽  
Scott A. Cairney

Abstract Purpose of Review Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations. Recent Findings Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations. Summary Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.


1986 ◽  
Vol 59 (3) ◽  
pp. 1135-1138 ◽  
Author(s):  
Penny Armstrong ◽  
Ernest McDaniel

A computerized problem-solving task was employed to study the relationships among problem-solving behaviors and learning styles. College students made choices to find their way home in a simulated “lost in the woods” task and wrote their. reasons at each choice point. Time to read relevant information and time to make decisions were measured by the computer clock. These variables were correlated with learning style variables from Schmeck's (1977) questionnaire. The findings indicated that subjects who perceived themselves as competent learners take more time on the problem-solving task, use more information and make fewer wrong choices.


Sign in / Sign up

Export Citation Format

Share Document