scholarly journals Pin1 Is Regulated by CaMKII Activation in Glutamate-Induced Retinal Neuronal Regulated Necrosis

Author(s):  
Shuchao Wang ◽  
Lvshuang Liao ◽  
Yanxia Huang ◽  
Mi Wang ◽  
Hongkang Zhou ◽  
...  
2021 ◽  
pp. 1-15
Author(s):  
Lu Zhou ◽  
Xian Xue ◽  
Qing Hou ◽  
Chunsun Dai

<b><i>Background:</i></b> Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. <b><i>Objectives:</i></b> The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. <b><i>Methods:</i></b> Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. <b><i>Results:</i></b> We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. <b><i>Conclusions:</i></b> This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.


2018 ◽  
Vol 125 ◽  
pp. 18-28 ◽  
Author(s):  
Brent M. Wood ◽  
Mitchell Simon ◽  
Samuel Galice ◽  
Chidera C. Alim ◽  
Maura Ferrero ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kongning Li ◽  
Deng Wu ◽  
Xi Chen ◽  
Ting Zhang ◽  
Lu Zhang ◽  
...  

Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.


2020 ◽  
Vol 10 (10) ◽  
pp. 1880-1903
Author(s):  
Aqu Alu ◽  
Xuejiao Han ◽  
Xuelei Ma ◽  
Min Wu ◽  
Yuquan Wei ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Megan T. Lewno ◽  
Taixing Cui ◽  
Xuejun Wang

Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin–proteasome system (UPS) but also the autophagic–lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1–RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.


2021 ◽  
Vol 8 ◽  
Author(s):  
Penglong Wu ◽  
Mingqi Cai ◽  
Jinbao Liu ◽  
Xuejun Wang

Background: Catecholamine surges and resultant excessive β-adrenergic stimulation occur in a broad spectrum of diseases. Excessive β-adrenergic stimulation causes cardiomyocyte necrosis, but the underlying mechanism remains obscure. Necroptosis, a major form of regulated necrosis mediated by RIPK3-centered pathways, is implicated in heart failure; however, it remains unknown whether excessive β-adrenergic stimulation-induced cardiac injury involves necroptosis. Hence, we conducted the present study to address these critical gaps.Methods and Results: Two consecutive daily injections of isoproterenol (ISO; 85 mg/kg, s.c.) or saline were administered to adult mixed-sex mice. At 24 h after the second ISO injection, cardiac area with Evans blue dye (EBD) uptake and myocardial protein levels of CD45, RIPK1, Ser166-phosphorylated RIPK1, RIPK3, and Ser345-phosphorylated MLKL (p-MLKL) were significantly greater, while Ser321-phosphorylated RIPK1 was significantly lower, in the ISO-treated than in saline-treated wild-type (WT) mice. The ISO-induced increase of EBD uptake was markedly less in RIPK3−/− mice compared with WT mice (p = 0.016). Pretreatment with the RIPK1-selective inhibitor necrostatin-1 diminished ISO-induced increases in RIPK3 and p-MLKL in WT mice and significantly attenuated ISO-induced increases of EBD uptake in WT but not RIPK3−/− mice.Conclusions: A large proportion of cardiomyocyte necrosis induced by excessive β-adrenergic stimulation belongs to necroptosis and is mediated by a RIPK1–RIPK3-dependent pathway, identifying RIPK1 and RIPK3 as potential therapeutic targets for catecholamine surges.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vikas Pandey ◽  
Lai-Hua Xie ◽  
Zhilin Qu ◽  
Zhen Song

Mitochondria fulfill the cell’s energy demand and affect the intracellular calcium (Ca2+) dynamics via direct Ca2+ exchange, the redox effect of reactive oxygen species (ROS) on Ca2+ handling proteins, and other signaling pathways. Recent experimental evidence indicates that mitochondrial depolarization promotes arrhythmogenic delayed afterdepolarizations (DADs) in cardiac myocytes. However, the nonlinear interactions among the Ca2+ signaling pathways, ROS, and oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways make it difficult to reveal the mechanisms. Here, we use a recently developed spatiotemporal ventricular myocyte computer model, which consists of a 3-dimensional network of Ca2+ release units (CRUs) intertwined with mitochondria and integrates mitochondrial Ca2+ signaling and other complex signaling pathways, to study the mitochondrial regulation of DADs. With a systematic investigation of the synergistic or competing factors that affect the occurrence of Ca2+ waves and DADs during mitochondrial depolarization, we find that the direct redox effect of ROS on ryanodine receptors (RyRs) plays a critical role in promoting Ca2+ waves and DADs under the acute effect of mitochondrial depolarization. Furthermore, the upregulation of mitochondrial Ca2+ uniporter can promote DADs through Ca2+-dependent opening of mitochondrial permeability transition pores (mPTPs). Also, due to much slower dynamics than Ca2+ cycling and ROS, oxidized CaMKII activation and the cytosolic ATP do not appear to significantly impact the genesis of DADs during the acute phase of mitochondrial depolarization. However, under chronic conditions, ATP depletion suppresses and enhanced CaMKII activation promotes Ca2+ waves and DADs.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
José Belizário ◽  
Luiz Vieira-Cordeiro ◽  
Sylvia Enns

Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents) or intracellular (DNA damage and Ca2+overload) stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER), cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identifiedcaspase-8,flip, andfaddgenes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1), RIPK3, and the mixed kinase domain-like (MLKL) for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.


Sign in / Sign up

Export Citation Format

Share Document