scholarly journals Endocannabinoids and Dopamine Balance Basal Ganglia Output

2021 ◽  
Vol 15 ◽  
Author(s):  
Lilach Gorodetski ◽  
Yocheved Loewenstern ◽  
Anna Faynveitz ◽  
Izhar Bar-Gad ◽  
Kim T. Blackwell ◽  
...  

The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.

2020 ◽  
Author(s):  
Lilach Gorodetski ◽  
Yocheved Loewenstern ◽  
Anna Faynveitz ◽  
Izhar Bar-Gad ◽  
Kim T. Blackwell ◽  
...  

AbstractThe entopeduncular nucleus is one of the basal ganglia’s output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the striatum and the globus pallidus and glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all the primary afferents to the entopeduncular nucleus. Our results suggest that dopamine-endocannabinoids interplay determines the balance of the direct or indirect dominance of entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoids diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.


2018 ◽  
Author(s):  
Kenji Morita ◽  
Yasuo Kawaguchi

The hypothesis that the basal-ganglia direct and indirect pathways represent goodness (or benefit) and badness (or cost) of options, respectively, explains a wide range of phenomena. However, this hypothesis, named the Opponent Actor Learning (OpAL), still has limitations. Structurally, the OpAL model does not incorporate differentiation of the two types of cortical inputs to the basal-ganglia pathways received from intratelencephalic (IT) and pyramidal-tract (PT) neurons. Functionally, the OpAL model does not describe the temporal-difference (TD)-type reward-prediction-error (RPE), nor explains how RPE is calculated in the circuitry connecting to the DA neurons. In fact, there is a different hypothesis on the basal-ganglia pathways and DA, named the Cortico-Striatal-Temporal-Difference (CS-TD) model. The CS-TD model differentiates the IT and PT inputs, describes the TD-type RPE, and explains how TD-RPE is calculated. However, a critical difficulty in this model lies in its assumption that DA induces the same direction of plasticity in both direct and indirect pathways, which apparently contradicts the experimentally observed opposite effects of DA on these pathways. Here, we propose a new hypothesis that integrates the OpAL and CS-TD models. Specifically, we propose that the IT-basal-ganglia pathways represent goodness/badness of current options while the PT-indirect pathway represents the overall value of the previously chosen option, and both of these have influence on the DA neurons, through the basal-ganglia output, so that a variant of TD-RPE is calculated. A key assumption is that opposite directions of plasticity are induced upon phasic activation of DA neurons in the IT-indirect pathway and PT-indirect pathway because of different profiles of IT and PT inputs. Specifically, at PT→indirect-pathway-medium-spiny-neuron (iMSN) synapses, sustained glutamatergic inputs generate rich adenosine, which allosterically prevents DA-D2 receptor signaling and instead favors adenosine-A2A receptor signaling. Then, phasic DA-induced phasic adenosine, which reflects TD-RPE, causes long-term synaptic potentiation. In contrast, at IT→iMSN synapses where adenosine is scarce, phasic DA causes long-term synaptic depression via D2 receptor signaling. This new Opponency & Temporal-Difference (OTD) model provides unique predictions, part of which is potentially in line with recently reported activity patterns of neurons in the globus pallidus externus on the indirect pathway.


2018 ◽  
Author(s):  
Hagar Lavian ◽  
Alon Korngreen

AbstractShort-term depression is a low pass filter of synaptic information that reduces and flattens synaptic information transfer at high presynaptic firing frequencies. This view questions the relevance of spontaneous high firing rates in some networks. In the indirect pathway of the basal ganglia, spontaneously active neurons in the globus pallidus (GP) form depressing inhibitory synapses in the basal ganglia output nuclei. Using numerical modeling and whole-cell recordings from single entopeduncular nucleus (EP) neurons in rat brain slices we investigated the contribution of the different firing rates of GP neurons to information transmission in the indirect pathway. Wholecell recordings showed significant variability in steady-state depression which decreased as stimulation frequency increased. Modeling predicted that this variability would translate into different postsynaptic noise levels during constitutive presynaptic activity. Our simulations further predicted that individual GP-EP synapses mediate gain control. However, when we consider integration of multiple inputs, the large range of GP firing rates would enable different modes of information transmission in which the magnitude and temporal features of postsynaptic modulation would change as a function of present and past firing rates of GP neurons. Finally, we predict that changes in dopamine levels can shift the action of GP neurons from rate coding to gain modulation. Our results thus demonstrate how short-term synaptic depression shapes information transmission in the basal ganglia in particular and via GABAergic synapses in general.Significant statementSynapses displaying short-term depression are low-pass filters of synaptic input. Consequently, when presynaptic firing is high, little information passes to the postsynaptic neuron. However, many neurons fire at relatively high frequencies all the time. Are their synapses constantly silenced by depression? We tested this apparent contradiction in the indirect pathway of the basal ganglia, where neurons from the globus pallidus (GP) form constitutively active depressing synapses on basal ganglia output. We hypothesized that the different rates of ongoing activity underlie different modes of action for GP neurons. We show that the synaptic and structural properties of the indirect pathway map GP baseline frequencies to different postsynaptic signals, thus demonstrating how short-term synaptic depression shapes information transmission in the basal ganglia.


2019 ◽  
Vol 116 (52) ◽  
pp. 26313-26320 ◽  
Author(s):  
Okihide Hikosaka ◽  
Masaharu Yasuda ◽  
Kae Nakamura ◽  
Masaki Isoda ◽  
Hyoung F. Kim ◽  
...  

At each time in our life, we choose one or few behaviors, while suppressing many other behaviors. This is the basic mechanism in the basal ganglia, which is done by tonic inhibition and selective disinhibition. Dysfunctions of the basal ganglia then cause 2 types of disorders (difficulty in initiating necessary actions and difficulty in suppressing unnecessary actions) that occur in Parkinson’s disease. The basal ganglia generate such opposite outcomes through parallel circuits: The direct pathway for initiation and indirect pathway for suppression. Importantly, the direct pathway processes good information and the indirect pathway processes bad information, which enables the choice of good behavior and the rejection of bad behavior. This is mainly enabled by dopaminergic inputs to these circuits. However, the value judgment is complex because the world is complex. Sometimes, the value must be based on recent events, thus is based on short-term memories. Or, the value must be based on historical events, thus is based on long-term memories. Such memory-based value judgment is generated by another parallel circuit originating from the caudate head and caudate tail. These circuit-information mechanisms allow other brain areas (e.g., prefrontal cortex) to contribute to decisions by sending information to these basal ganglia circuits. Moreover, the basal ganglia mechanisms (i.e., what to choose) are associated with cerebellum mechanisms (i.e., when to choose). Overall, multiple levels of parallel circuits in and around the basal ganglia are essential for coordinated behaviors. Understanding these circuits is useful for creating clinical treatments of disorders resulting from the failure of these circuits.


Brain ◽  
2021 ◽  
Author(s):  
Anastasia Brodovskaya ◽  
Shinnosuke Shiono ◽  
Jaideep Kapur

Abstract There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.


2021 ◽  
Vol 22 (5) ◽  
pp. 2691
Author(s):  
Vincenza D’Angelo ◽  
Mauro Giorgi ◽  
Emanuela Paldino ◽  
Silvia Cardarelli ◽  
Francesca R. Fusco ◽  
...  

We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/− knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3–0.4 μm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/−, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/−, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/−, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/−, opposite changes of A2A receptors’ expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.


2019 ◽  
Author(s):  
Hidetoshi Amita ◽  
Okihide Hikosaka

AbstractChoosing good objects is essential for real life, which is controlled mainly by the basal ganglia. For that, a subject need to not only find good objects, but ‘reject’ bad objects. To reveal this ‘rejection’ mechanism, we created a sequential saccade choice task for monkeys and studied the indirect pathway of caudate tail mediated by cvGPe (caudal-ventral globus pallidus externus). The inhibitory responses of cvGPe neurons to bad objects were smaller when the monkey made saccades to them by mistake. Moreover, experimental reduction of the inhibitory response by local injection of bicuculline (GABAA antagonist) disabled the monkey to reject bad objects. In conclusion, rejecting bad objects is crucial for goal-directed behavior, which is controlled by the indirect pathway in the basal ganglia.


2021 ◽  
Vol 11 (10) ◽  
pp. 4628
Author(s):  
Macarena Iniesta-Pallarés ◽  
Consolación Álvarez ◽  
Francisco M. Gordillo-Cantón ◽  
Carmen Ramírez-Moncayo ◽  
Pilar Alves-Martínez ◽  
...  

Current agricultural productivity depends on an exogenous nutrient supply to crops. This is of special relevance in cereal production, a fundamental part of the trophic chain that plays a vital role in the human diet. However, our agricultural practices entail highly detrimental side-effects from an environmental point of view. Long-term nitrogen fertilization in croplands results in degradation of soil, water, and air quality, producing eutrophication and subsequently contributing to global warming. In accordance with this, there is a biotechnological interest in using nitrogen-fixing microorganisms to enhance crop growth without adding chemically synthesized nitrogen fertilizers. This is particularly beneficial in paddy fields, where about 60% of the synthetic fertilizer that has been applied is dissolved in the water and washed away. In these agricultural systems, N2-fixing cyanobacteria show a promising biotechnological potential as biofertilizers, improving soil fertility while reducing the environmental impact of the agricultural practice. In the current study, Andalusian paddy fields have been explored to isolate N2-fixing cyanobacteria. These endogenous microorganisms have been subsequently re-introduced in a field trial in order to enhance rice production. Our results provide valuable insights regarding the use of an alternative natural source of nitrogen for rice production.


2021 ◽  
pp. 1-12
Author(s):  
Xi Bai ◽  
Peter Vajkoczy ◽  
Katharina Faust

<b><i>Objective:</i></b> The pathophysiology of dystonia is poorly understood. As opposed to secondary forms of dystonia, primary dystonia has long been believed to lack any neuroanatomical substrate. During trajectory planning for DBS, however, conspicuous T2-hyperinstensive signal alterations (SA) were registered within the target region, even in young patients, where ischemia is rare. <b><i>Methods:</i></b> Fifty MRIs of primary dystonia patients scheduled for DBS were analyzed. Total basal ganglia (BG) volumes, as well as proportionate SA volumes, were measured and compared to 50 age-matched control patients. <b><i>Results:</i></b> There was a 10-fold preponderance of percentaged SA within the globus pallidus (GP) in dystonia patients. The greatest disparity was in young patients &#x3c;25 years. Also, total BG volume differences were observed with larger GP and markedly smaller putamen and caudate in the dystonia group. <b><i>Conclusions:</i></b> BG morphology in primary dystonia differed from a control population. Volume reductions of the putamen and caudate may reflect functional degeneration, while volume increases of the GP may indicate overactivity. T2-hyperintensive SA in the GP of young primary dystonia patients, where microvascular lesions are highly unlikely, are striking. Their pathogenic role remains unclear.


2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Chuyao Luo ◽  
Xutao Li ◽  
Yongliang Wen ◽  
Yunming Ye ◽  
Xiaofeng Zhang

The task of precipitation nowcasting is significant in the operational weather forecast. The radar echo map extrapolation plays a vital role in this task. Recently, deep learning techniques such as Convolutional Recurrent Neural Network (ConvRNN) models have been designed to solve the task. These models, albeit performing much better than conventional optical flow based approaches, suffer from a common problem of underestimating the high echo value parts. The drawback is fatal to precipitation nowcasting, as the parts often lead to heavy rains that may cause natural disasters. In this paper, we propose a novel interaction dual attention long short-term memory (IDA-LSTM) model to address the drawback. In the method, an interaction framework is developed for the ConvRNN unit to fully exploit the short-term context information by constructing a serial of coupled convolutions on the input and hidden states. Moreover, a dual attention mechanism on channels and positions is developed to recall the forgotten information in the long term. Comprehensive experiments have been conducted on CIKM AnalytiCup 2017 data sets, and the results show the effectiveness of the IDA-LSTM in addressing the underestimation drawback. The extrapolation performance of IDA-LSTM is superior to that of the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document