scholarly journals Closing the Critical Period Is Required for the Maturation of Binocular Integration in Mouse Primary Visual Cortex

2021 ◽  
Vol 15 ◽  
Author(s):  
Jiangping Chan ◽  
Xiangwen Hao ◽  
Qiong Liu ◽  
Jianhua Cang ◽  
Yu Gu

Binocular matching of orientation preference between the two eyes is a common form of binocular integration that is regarded as the basis for stereopsis. How critical period plasticity enables binocular matching under the guidance of normal visual experience has not been fully demonstrated. To investigate how critical period closure affects the binocular matching, a critical period prolonged mouse model was constructed through the administration of bumetanide, an NKCC1 transporter antagonist. Using acute in vivo extracellular recording and molecular assay, we revealed that binocular matching was transiently disrupted due to heightened plasticity after the normal critical period, together with an increase in the density of spines and synapses, and the upregulation of GluA1 expression. Diazepam (DZ)/[(R, S)-3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP)] could reclose the extended critical period, and rescue the deficits in binocular matching. Furthermore, the extended critical period, alone, with normal visual experience is sufficient for the completion of binocular matching in amblyopic mice. Similarly, prolonging the critical period into adulthood by knocking out Nogo-66 receptor can prevent the normal maturation of binocular matching and depth perception. These results suggest that maintaining an optimal plasticity level during adolescence is most beneficial for the systemic maturation. Extending the critical period provides new clues for the maturation of binocular vision and may have critical implications for the treatment of amblyopia.

2021 ◽  
Author(s):  
Liming Tan ◽  
Dario L. Ringach ◽  
S. Lawrence Zipursky ◽  
Joshua T. Trachtenberg

Depth perception emerges from the development of binocular neurons in primary visual cortex. Vision is required for these neurons to acquire their mature responses to visual stimuli. A prevalent view is that vision does not influence binocular circuitry until the onset of the critical period, about a week after eye opening, and that this relies on inhibition. Here, we show that vision is required to form binocular neurons and to improve binocular tuning and matching from eye opening until critical period closure. Inhibition is not required for this process, but rather antagonizes it. Vision improves the tuning properties of binocular neurons by strengthening and sharpening ipsilateral eye cortical responses. This progressively changes the population of neurons in the binocular pool and this plasticity is sensitive to interocular differences prior to the critical period. Thus, vision guides binocular plasticity from eye opening and prior to the classically defined critical period.


2019 ◽  
Vol 116 (43) ◽  
pp. 21812-21820 ◽  
Author(s):  
Yujiao Jennifer Sun ◽  
J. Sebastian Espinosa ◽  
Mahmood S. Hoseini ◽  
Michael P. Stryker

The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.


2019 ◽  
Author(s):  
Yujiao Jennifer Sun ◽  
J. Sebastian Espinosa ◽  
Mahmood S. Hoseini ◽  
Michael P. Stryker

AbstractThe developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 days. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.Significance statementThe operation of the cortex depends on the connections among its neurons. Taking advantage of molecular and genetic tools to label major proteins of the presynaptic and postsynaptic densities, we studied how connections of layer 2/3 excitatory neurons in mouse visual cortex were changed by monocular visual deprivation during the critical period, which causes amblyopia. The deprivation induced rapid remodeling of postsynaptic spines and impaired bouton formation. Structural measurement followed by calcium imaging demonstrated a strong correlation between changes in postsynaptic structures and functional responses in individual neurons after monocular deprivation. These findings suggest that anatomical changes at postsynaptic sites serve as a substrate for experience-dependent plasticity in the developing visual cortex.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Alexa Tierno ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
...  

AbstractPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


2021 ◽  
Author(s):  
Jun Zhuang ◽  
Yun Wang ◽  
Naveen D Ouellette ◽  
Emily Turschak ◽  
Rylan Larsen ◽  
...  

The motion/direction-sensitive and location-sensitive neurons are two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It has been proposed that the motion/direction-sensitive neurons mainly target the superficial layers in V1, in contrast to the location-sensitive neurons which mainly target the middle layers. Here, by imaging calcium activities of motion/direction-sensitive and location-sensitive axons in V1, we find no evidence for these cell-type specific laminar biases at population level. Furthermore, using a novel approach to reconstruct single-axon structures with identified in vivo response types, we show that, at single-axon level, the motion/direction-sensitive axons have middle layer preferences and project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that Motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1, challenging the current view of the thalamocortical organizations in the mouse visual system.


2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


2020 ◽  
Vol 30 (8) ◽  
pp. 4662-4676
Author(s):  
Kevin J Monk ◽  
Simon Allard ◽  
Marshall G Hussain Shuler

Abstract The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.


Sign in / Sign up

Export Citation Format

Share Document