scholarly journals Lack of Association Between Shape and Volume of Subcortical Brain Structures and Restless Legs Syndrome

2018 ◽  
Vol 9 ◽  
Author(s):  
Marco Hermesdorf ◽  
Benedikt Sundermann ◽  
Rajesh Rawal ◽  
András Szentkirályi ◽  
Udo Dannlowski ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Farnoosh Emamian ◽  
Mostafa Mahdipour ◽  
Khadijeh Noori ◽  
Masoumeh Rostampour ◽  
S. Bentolhoda Mousavi ◽  
...  

Insomnia disorder (ID) is a common illness associated with mood and cognitive impairments. Subtyping ID is an ongoing debate in sleep medicine, but the underlying mechanisms of each subtype is poorly understood. Growing evidence suggests that subcortical brain structures play the key roles in pathophysiology of ID and its subtypes. Here, we aimed to investigate structural alteration of subcortical regions in patients with two common ID subtypes i.e., paradoxical and psychophysiological insomnia. Fifty-five patients and 49 healthy controls were recruited for this study and T1-weighted images and subjective and objective sleep parameters (i.e., Pittsburgh Sleep Quality Index and polysomnography) were collected from participants. Subcortical structures including the hippocampus, amygdala, caudate, putamen, globus pallidus, nucleus accumbens, and thalamus were automatically segmented in FSL. Volume and shape (using surface vertices) of each structure were compared between the groups, controlled for covariates, and corrected for multiple comparisons. In addition, correlations of sleep parameters and surface vertices or volumes were calculated. The caudate's volume was smaller in patients than controls. Compared with controls, we found regional shrinkage in the caudate, nucleus accumbens, posterior putamen, hippocampus, thalamus, and amygdala in paradoxical insomnia and shrinkage in the amygdala, caudate, hippocampus, and putamen in psychophysiological insomnia. Interestingly, comparing two patients groups, shape alteration in the caudate, putamen, and nucleus accumbens in paradoxical insomnia and shrinkage in the thalamus, amygdala, and hippocampus in psychophysiological insomnia were observed. Both subjective and objective sleep parameters were associated with these regional shape alterations in patients. Our results support the differential role of subcortical brain structures in pathophysiology of paradoxical and psychophysiological insomnia.


Nature ◽  
2015 ◽  
Vol 520 (7546) ◽  
pp. 224-229 ◽  
Author(s):  
Derrek P. Hibar ◽  
◽  
Jason L. Stein ◽  
Miguel E. Renteria ◽  
Alejandro Arias-Vasquez ◽  
...  

2017 ◽  
Vol 122 (s1) ◽  
pp. S49-S58 ◽  
Author(s):  
Francisco B. Ortega ◽  
Daniel Campos ◽  
Cristina Cadenas-Sanchez ◽  
Signe Altmäe ◽  
Cristina Martínez-Zaldívar ◽  
...  

AbstractA few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.


2019 ◽  
Vol 34 (5) ◽  
pp. 735-735
Author(s):  
L Bennett ◽  
C Bernick ◽  
S Banks

Abstract Purpose Verbal fluency performance has been shown to be sensitive to preclinical cognitive changes in neurodegenerative diseases and may detect early, trauma-related cognitive and volumetric changes amongst professional fighters. Baseline verbal fluency performance and volumes of relevant subcortical brain structures were expected to decline as number of professional fights (NoPF) increased, while controlling for education. Methods Baseline letter and semantic fluency performance, NoPF, and structural brain imaging from 548 active and retired fighters who participated in the Professional Fighters Brain Health Study were considered. ANCOVAs were conducted to assess differences in verbal fluency performance by NOPF, while controlling for years of education. Number of professional fights were stratified into low (0-20 fights), medium (21-40 fights), and high (41 or more fights). Results Semantic fluency performance differed across the three levels of NoPF (F(2, 542)=4.56; p<.02). In addition, significant positive correlations between semantic fluency performance and volumes in the following regions were observed: left thalamus, left putamen, left pallidum, bilateral caudates, bilateral amygdalae, bilateral hippocampi, and bilateral accumbens (all p’s<.05). In contrast, letter fluency performance was not significantly associated with NoPF or volumes of relevant subcortical brain structures (all p’s>.05). Conclusion Semantic fluency may be low-cost, easy-to-administer harbinger of emerging cognitive dysfunction and lower volumes in related subcortical brain regions. Additional assessment of clinical utility is necessary.


Sign in / Sign up

Export Citation Format

Share Document