scholarly journals Electrophysiological Signature and the Prediction of Deep Brain Stimulation Withdrawal and Insertion Effects

2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Trenado ◽  
Laura Cif ◽  
Nicole Pedroarena-Leal ◽  
Diane Ruge

Deep brain stimulation (DBS) serves as a treatment for neurological and psychiatric disorders, such as Parkinson's disease (PD), essential tremor, dystonia, Tourette Syndrome (GTS), Huntington's disease, and obsessive-compulsive disorder (OCD). There is broad experience with the short-term effects of DBS in individual diseases and their signs/symptoms. However, even in acute treatment and for the same disorder or a given disorder, a prediction of effect is not perfect. Even further, the factors that influence the long-term effect of DBS and its withdrawal are hardly characterized. In this work, we aim to shed light on an important topic, the question of “DBS dependency.” To address this, we make use of the Kuramoto model of phase synchronization (oscillation feature) endowed with neuroplasticity to study the effects of DBS under successive withdrawals and renewals of neuromodulation as well as influence of treatment duration in de novo DBS “patients.” The results of our simulation show that the characteristics of neuroplasticity have a profound effect on the stability and mutability of oscillation synchronization patterns across successive withdrawal and renewal of DBS in chronic “patients” and also in de novo DBS “patients” with varying duration of treatment (here referred to as the “number of iterations”). Importantly, the results demonstrate the strong effect of the individual neuroplasticity makeup on the behavior of synchrony of oscillatory activity that promotes certain disorder/disease states or symptoms. The effect of DBS-mediated neuromodulation and withdrawal is highly dependent on the makeup of the neuroplastic signature of a disorder or an individual.

2016 ◽  
Vol 115 (1) ◽  
pp. 19-38 ◽  
Author(s):  
Todd M. Herrington ◽  
Jennifer J. Cheng ◽  
Emad N. Eskandar

Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.


Epilepsia ◽  
2021 ◽  
Author(s):  
Barbora Deutschová ◽  
Petr Klimeš ◽  
Zsofia Jordan ◽  
Pavel Jurák ◽  
Lorand Erőss ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

AbstractDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1293-1296
Author(s):  
Jens Kuhn ◽  
Juan Carlos Baldermann

This scientific commentary refers to ‘Deep brain stimulation modulates directional limbic connectivity in obsessive-compulsive disorder’, by Fridgeirsson etal. (doi:10.1093/brain/awaa100).


2013 ◽  
Vol 73 (9) ◽  
pp. e29-e31 ◽  
Author(s):  
Nicole C.R. McLaughlin ◽  
Elizabeth R. Didie ◽  
Andre G. Machado ◽  
Suzanne N. Haber ◽  
Emad N. Eskandar ◽  
...  

Author(s):  
Juan Carlos Baldermann ◽  
Thomas Schüller ◽  
Sina Kohl ◽  
Valerie Voon ◽  
Ningfei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document