scholarly journals Hemispheric Lateralization of Visuospatial Attention Is Independent of Language Production on Right-Handers: Evidence From Functional Near-Infrared Spectroscopy

2022 ◽  
Vol 12 ◽  
Author(s):  
Gaoding Jia ◽  
Guangfang Liu ◽  
Haijing Niu

It is well-established that visuospatial attention is mainly lateralized to the right hemisphere, whereas language production is mainly left-lateralized. However, there is a significant controversy regarding how these two kinds of lateralization interact with each other. The present research used functional near-infrared spectroscopy (fNIRS) to examine whether visuospatial attention is indeed right-lateralized, whereas language production is left-lateralized, and more importantly, whether the extent of lateralization in the visuospatial task is correlated with that in the task involving language. Specifically, fifty-two healthy right-handed participants participated in this study. Multiple-channel fNIRS technique was utilized to record the cerebral hemodynamic changes when participants were engaged in naming objects depicted in pictures (the picture naming task) or judging whether a presented line was bisected correctly (the landmark task). The degree of hemispheric lateralization was quantified according to the activation difference between the left and right hemispheres. We found that the picture-naming task predominantly activated the inferior frontal gyrus (IFG) of the left hemisphere. In contrast, the landmark task predominantly activated the inferior parietal sulcus (IPS) and superior parietal lobule (SPL) of the right hemisphere. The quantitative calculation of the laterality index also showed a left-lateralized distribution for the picture-naming task and a right-lateralized distribution for the landmark task. Intriguingly, the correlation analysis revealed no significant correlation between the laterality indices of these two tasks. Our findings support the independent hypothesis, suggesting that different cognitive tasks may engender lateralized processing in the brain, but these lateralized activities may be independent of each other. Meanwhile, we stress the importance of handedness in understanding the relationship between functional asymmetries. Methodologically, we demonstrated the effectiveness of using the multichannel fNIRS technique to investigate the hemispheric specialization of different cognitive tasks and their lateralization relations between different tasks. Our findings and methods may have important implications for future research to explore lateralization-related issues in individuals with neural pathologies.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2019 ◽  
Author(s):  
T. Gruber ◽  
C. Debracque ◽  
L. Ceravolo ◽  
K. Igloi ◽  
B. Marin Bosch ◽  
...  

AbstractVariations of the vocal tone of the voice during speech production, known as prosody, provide information about the emotional state of the speaker. In recent years, functional imaging has suggested a role of both right and left inferior frontal cortices in attentive decoding and cognitive evaluation of emotional cues in human vocalizations. Here, we investigated the suitability of functional Near-Infrared Spectroscopy (fNIRS) to study frontal lateralization of human emotion vocalization processing during explicit and implicit categorization and discrimination. Participants listened to speech-like but semantically meaningless words spoken in a neutral, angry or fearful tone and had to categorize or discriminate them based on their emotional or linguistic content. Behaviorally, participants were faster to discriminate than to categorize and they processed the linguistic content of stimuli faster than their emotional content, while an interaction between condition (emotion/word) and task (discrimination/categorization) influenced accuracy. At the brain level, we found a four-way interaction in the fNIRS signal between condition, task, emotion and channel, highlighting the involvement of the right hemisphere to process fear stimuli, and of both hemispheres to treat anger stimuli. Our results show that fNIRS is suitable to study vocal emotion evaluation in humans, fostering its application to study emotional appraisal.


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1250
Author(s):  
Kohei Maruya ◽  
Tomoyuki Arai ◽  
Hiroaki Fujita

We aimed to detect brain abnormalities during cognitive and motor tasks in older individuals with pre-frailty, as this could prevent dementia. Sixty elderly participants (mean age: 76.3 years; 27 healthy and 33 with pre-frailty) were included, and their motor function, cognitive function, and dual-task abilities (gait with calculation and while carrying a ball) were evaluated. Total hemoglobin (t-Hb) was measured using functional near-infrared spectroscopy (fNIRS) during tasks and resting periods. The pre-frailty group had a slightly lower gait speed than the healthy group, but there was no significant difference in cognitive function. In the pre-frailty group, the t-Hb values during the normal gait and cognitive tasks were higher than the resting value in the right prefrontal cortex, while in the healthy group, only the word frequency task (WFT) was higher. Furthermore, in the WFT, the t-Hb values were significantly lower in the pre-frailty group than in the healthy group. The results showed that pre-frail subjects had lower brain activation during the WFT in the right prefrontal cortex and excessive activity during walking, even without a noticeable cognitive decline. The differences in cerebral blood flow under the pre-frailty conditions may be a clue to detecting cognitive decline earlier.


2021 ◽  
Author(s):  
Sungmin Cho ◽  
Won-Seok Kim ◽  
Jihong Park ◽  
Seung Hyun Lee ◽  
Jongseung Lee ◽  
...  

Unilateral spatial neglect (USN) is common after stroke and associated with poor functional recovery. Prism adaptation (PA) is one of the most supported modality able to ameliorate USN but underapplied due to several issues. Using immersive virtual reality and depth-sensing camera, we developed the virtual prism adaptation therapy (VPAT) to overcome the limitations in conventional PA. In this study, we investigated whether VPAT can induce behavioral adaptations and which cortical area is most significantly activated. Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VAPT, VPAT-10°, VPAT-20°, and post-VPAT) with functional near-infrared spectroscopy recordings. Each phase consisted of alternating target pointing and resting (or clicking) blocks. To find out the most significantly activated area during pointing in different phases (VPAT-10°, VPAT-20°, and Post-VPAT) in contrast to pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10°and VPAT-20°phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase. The most significantly activated channels were all located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network. Future clinical trials using multiple sessions of a high degree of rightward deviation VPAT over a more extended period are required in stroke patients with unilateral spatial neglect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Li ◽  
Junlin Mu ◽  
Chenyu Shen ◽  
Guanqun Yao ◽  
Kun Feng ◽  
...  

Background: Functional near-infrared spectroscopy (fNIRS) has many advantages over other neuroimaging modalities for routine measurement of task-dependent cortical activation, but most fNIRS studies of schizophrenia have used letter fluency tasks (LFTs). Further, performances on category fluency tasks (CFTs) and LFTs may be distinct in Chinese patients due to the unique semantic features of Chinese written characters. To identify unique disease biomarkers measurable by fNIRS in Chinese schizophrenia patients, this study compared cortical oxygenated hemoglobin changes ([oxy-Hb]) during a Chinese LFT and CFT between patients and healthy controls.Methods: Inpatients of the Second Affiliated Hospital of Xinxiang Medical University were recruited from Match 2020 to July 2021. The Positive and Negative Symptom Scale (PANSS) was used to evaluate psychiatric symptoms. Dynamic changes in [oxy-Hb], an indicator of neural activity, were measured during CFT and LFT performance by 52-channel fNIRS.Results: Forty-seven schizophrenia inpatients and 29 healthy controls completed all tests. Schizophrenia patients showed significant cortical activation at 15 channels covering the left hemisphere and 17 channels over the right hemisphere during the CFT. During the LFT, activity was significantly increased at only six channels, all over the left hemisphere (FDR P < 0.05). In healthy controls, significant [oxy-Hb] increases were found at 24 channels over the left hemisphere and 19 channels over the right hemisphere during CFT. While during the LFT, the significant increases were found at 7 channels all over the left hemisphere (FDR P < 0.05). When years of education was included as a covariate, the schizophrenia group demonstrated no significant hypoactivation relative to healthy controls at any channel after FDR correction (FDR P < 0.05) during CFT while demonstrated significant hypoactivation at channel 11 during LFT (FDR P < 0.05). There were no significant associations between PANSS scores and [oxy-Hb] changes after FDR correction (FDR P < 0.05).Conclusions: Left lateralization during CFT was reduced among schizophrenia patients and may be related to the semantic deficit. The Chinese-CFT could be a more sensitive indicator of frontal-temporal dysfunction in schizophrenia.


2020 ◽  
Vol 10 (12) ◽  
pp. 939
Author(s):  
Franziska Stephan ◽  
Henrik Saalbach ◽  
Sonja Rossi

Studies in adults showed differential neural processing between overt and inner speech. So far, it is unclear whether inner and overt speech are processed differentially in children. The present study examines the pre-activation of the speech network in order to disentangle domain-general executive control from linguistic control of inner and overt speech production in 6- to 7-year-olds by simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Children underwent a picture-naming task in which the pure preparation of a subsequent speech production and the actual execution of speech can be differentiated. The preparation phase does not represent speech per se but it resembles the setting up of the language production network. Only the fNIRS revealed a larger activation for overt, compared to inner, speech over bilateral prefrontal to parietal regions during the preparation phase. Findings suggest that the children’s brain can prepare the subsequent speech production. The preparation for overt and inner speech requires different domain-general executive control. In contrast to adults, the children’s brain did not show differences between inner and overt speech when a concrete linguistic content occurs and a concrete execution is required. This might indicate that domain-specific executive control processes are still under development.


2020 ◽  
Vol 32 (8) ◽  
pp. 1497-1507 ◽  
Author(s):  
Vitória Piai ◽  
Elke De Witte ◽  
Joanna Sierpowska ◽  
Xiaochen Zheng ◽  
Leighton B. Hinkley ◽  
...  

Little is known about language impairment in brain tumor patients, especially in the presurgical phase. Impairment in this population may be missed because standardized tests fail to capture mild deficits. Additionally, neuroplasticity may also contribute to minimizing language impairments. We examined 14 presurgical patients with brain tumors in the language-dominant hemisphere using magnetoencephalography (MEG) while they performed a demanding picture–word interference task, that is, participants name pictures while ignoring distractor words. Brain tumor patients had behavioral picture-naming effects typically observed in healthy controls. The MEG responses also showed the expected pattern in its timing and amplitude modulation typical of controls, but with an altered spatial distribution of right hemisphere sources, in contrast to the classic left hemisphere source found in healthy individuals. This finding supports tumor-induced neural reorganization of language before surgery. Crucially, the use of electrophysiology allowed us to show the “same” neuronal response in terms of its timing and amplitude modulation in the right hemisphere, supporting the hypothesis that the processes performed by the right hemisphere following reorganization are similar in nature to those (previously) performed by the left hemisphere. We also identified one participant with a fast-growing tumor affecting large parts of critical language areas and underlying ventral and dorsal white matter tracts who showed a deviant pattern in behavior and in the MEG event-related responses. In conclusion, our results attest to the validity of using a demanding picture-naming task in presurgical patients and provide evidence for neuroplasticity, with the right hemisphere performing similar computations as the left hemisphere typically performs.


2020 ◽  
Author(s):  
Heidi Ala-Salomäki ◽  
Jan Kujala ◽  
Mia Liljeström ◽  
Riitta Salmelin

AbstractReliable paradigms and imaging measures of individual-level brain activity are paramount when reaching from group-level research studies to clinical assessment of individual patients. Magnetoencephalography (MEG) provides a direct, non-invasive measure of cortical processing with high spatiotemporal accuracy, and is thus well suited for assessment of functional brain damage in patients with language difficulties. This MEG study aimed to identify, in a picture naming paradigm, source-localized evoked activity and modulations of cortical oscillations that show high test-retest reliability across measurement days in healthy individuals, demonstrating their applicability in clinical settings. For patients with a severe language disorder picture naming can be a challenging task. Therefore, we also determined whether a semantic judgement task (‘is this item living’) with a spoken response (‘yes’/’no’) would suffice to induce comparably consistent activity within brain regions related to language production. The MEG data was collected from 19 healthy participants on two separate days. In picture naming, evoked activity was consistent across measurement days (intraclass correlation coefficient (ICC)>0.4) in the left frontal (400–800 ms after image onset), sensorimotor (200–800 ms), parietal (200–600 ms), temporal (200–800 ms), occipital (400–800 ms) and cingulate (600–800 ms) regions, as well as the right temporal (600–800 ms) region. In the semantic judgement task, consistent evoked activity was spatially more limited, occurring in the left temporal (200–800 ms), sensorimotor (400–800 ms), occipital (400–600 ms) and subparietal (600–800 ms) regions, and the right supramarginal cortex (600–800 ms). The naming task showed typical beta oscillatory suppression in premotor and sensorimotor regions (800–1200 ms) but other consistent modulations of oscillatory activity were mostly observed in posterior cortical regions that have not typically been associated with language processing. The high test-retest consistency of MEG evoked activity in the picture naming task testifies to its applicability in clinical evaluations of language function, as well as in longitudinal MEG studies of language production in clinical and healthy populations.


NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. S323 ◽  
Author(s):  
Willy N.J.M. Collier ◽  
Irene Jaquet ◽  
Margarita M. van der Hoeven ◽  
Peter Hagoort ◽  
Berend Oeseburg

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2362 ◽  
Author(s):  
Alexander E. Hramov ◽  
Vadim Grubov ◽  
Artem Badarin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


Sign in / Sign up

Export Citation Format

Share Document