scholarly journals Determinants of Neural Plastic Changes Induced by Motor Practice

2021 ◽  
Vol 15 ◽  
Author(s):  
Wen Dai ◽  
Kento Nakagawa ◽  
Tsuyoshi Nakajima ◽  
Kazuyuki Kanosue

Short-term motor practice leads to plasticity in the primary motor cortex (M1). The purpose of this study is to investigate the factors that determine the increase in corticospinal tract (CST) excitability after motor practice, with special focus on two factors; “the level of muscle activity” and “the presence/absence of a goal of keeping the activity level constant.” Fifteen healthy subjects performed four types of rapid thumb adduction in separate sessions. In the “comfortable task” (C) and “forceful task” (F), the subjects adducted their thumb using comfortable and strong forces. In the “comfortable with a goal task” (CG) and “forceful with a goal task” (FG), subjects controlled the muscle activity at the same level as in the C and F, respectively, by adjusting the peak electromyographic amplitude within the target ranges. Paired associative stimulation (PAS), which combines peripheral nerve (median nerve) stimulation and transcranial magnetic stimulation (TMS), with an inter-stimulus interval of 25 ms (PAS25) was also done. Before and after the motor tasks and PAS25, TMS was applied to the M1. None of the four tasks showed any temporary changes in behavior, meaning no learning occurred. Motor-evoked potential (MEP) amplitude increased only after the FG and it exhibited a positive correlation with the MEP increase after PAS25, suggesting that FG and PAS25 share at least similar plasticity mechanisms in the M1. Resting motor threshold (RMT) decreased only after FG, suggesting that FG would also be associated with the membrane depolarization of M1 neurons. These results suggest task-dependent plasticity from the synergistic effect of forceful muscle activity and of setting a goal of keeping the activity level constant.

2009 ◽  
Vol 106 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Sarah Pirio Richardson ◽  
Mikhael Lomarev ◽  
Ejaz Shamim ◽  
Sabine Meunier ◽  
...  

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts × 10 repetitions, 10 sessions, 4 wk) at 70–80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater ( P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (Mmax), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Yang ◽  
Ines Eisner ◽  
Siqi Chen ◽  
Shaosong Wang ◽  
Fan Zhang ◽  
...  

While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.


Author(s):  
Daisuke Sato ◽  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Koyuki Ikarashi ◽  
Hideaki Onishi ◽  
...  

We aimed to verify whether indirect-wave (I-wave) recruitment and cortical inhibition can regulate or predict the plastic response to paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), and also whether water immersion (WI) can facilitate the subsequent PAS25-induced plasticity. To address the first question, we applied transcranial magnetic stimulation (TMS) to the M1 hand area, while alternating the direction of the induced current between posterior-to-anterior and anterior-to-posterior to activate two independent synaptic inputs to the corticospinal neurons. Moreover, we used a paired stimulation paradigm to evaluate the short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI). To address the second question, we examined the motor evoked potential (MEP) amplitudes before and after PAS25, with and without WI, and used the SAI, SICI, and MEP recruitment curves to determine the mechanism underlying priming by WI on PAS25. We demonstrated that SAI, with an inter-stimulus interval of 25 ms, might serve as a predictor of the response to PAS25, whereas I-wave recruitment evaluated by the MEP latency difference was not predictive of the PAS25 response, and found that 15 min WI prior to PAS25 facilitated long-term potentiation (LTP)-like plasticity due to a homeostatic increase in cholinergic activity.


2007 ◽  
Vol 97 (3) ◽  
pp. 2511-2515 ◽  
Author(s):  
Michelle L. Harris-Love ◽  
Monica A. Perez ◽  
Robert Chen ◽  
Leonardo G. Cohen

Interhemispheric inhibitory interactions (IHI) operate between homologous distal hand representations in primary motor cortex (M1). It is not known whether proximal arm representations exhibit comparable effects on their homologous counterparts. We studied IHI in different arm representations, targeting triceps brachii (TB, n = 13), first dorsal interosseous (FDI, n = 13), and biceps brachii (BB, n = 7) muscles in healthy volunteers. Transcranial magnetic stimulation test stimuli (TS) were delivered to M1 contralateral to the target muscle preceded 10 ms by a conditioning stimulus (CS) to the opposite M1 at 110–150% resting motor threshold (RMT). IHI was calculated as the ratio between motor-evoked potential (MEP) amplitudes in conditioned relative to unconditioned trials. Mean RMTs were 38.9, 46.9, and 46.0% of stimulator output in FDI, TB, and BB muscles, respectively. IHI was 0.45 ± 0.41 (FDI), 0.78 ± 0.38 (TB), and 0.52 ± 0.32 (BB, P < 0.01) when test MEP amplitudes were matched and 0.28 ± 0.17 (FDI) and 0.85 ± 0.31 (TB, P < 0.05) when TS intensities expressed as percentage RMT were matched. Significant IHI ( P < 0.05) was identified with minimal CS intensities (expressed as percentage stimulator output) in the 30 s for FDI, 60 s for TB, and 40 s for BB. Additionally, a CS of roughly 120% RMT suppressed the test MEP but not a test H-reflex in BB, suggesting IHI observed in BB is likely mediated by a supraspinal mechanism. We conclude that IHI differs between different arm muscle representations, comparable between BB and FDI but lesser for TB. This finding suggests the amount of IHI between different arm representations does not strictly follow a proximal-to-distal gradient, but may be related to the role of each muscle in functional movement synergies.


2021 ◽  
pp. 096452842110575
Author(s):  
Francisco Xavier de Brito ◽  
Cleber Luz-Santos ◽  
Janine Ribeiro Camatti ◽  
Rodrigo Jorge de Souza da Fonseca ◽  
Giovana Suzarth ◽  
...  

Introduction: There is evidence that electroacupuncture (EA) acts through the modulation of brain activity, but little is known about its influence on corticospinal excitability of the primary motor cortex (M1). Objective: To investigate the influence of EA parameters on the excitability of M1 in healthy individuals. Methods: A parallel, double blind, randomized controlled trial in healthy subjects, evaluating the influence of an EA intervention on M1 excitability. Participants had a needle inserted at LI4 in the dominant hand and received electrical stimulation of different frequencies (10 or 100 Hz) and amplitude (sensory or motor threshold) for 20 min. In the control group, only a brief (30 s) electrical stimulation was applied. Single and paired pulse transcranial magnetic stimulation coupled with electromyography was applied before and immediately after the EA intervention. Resting motor threshold, motor evoked potential, short intracortical inhibition and intracortical facilitation were measured. Results: EA increased corticospinal excitability of M1 compared to the control group only when administered with a frequency of 100 Hz at the sensory threshold ( p < 0.05). There were no significant changes in the other measures. Conclusion: The results suggest that EA with an intensity level at the sensorial threshold and 100 Hz frequency increases the corticospinal excitability of M1. This effect may be associated with a decrease in the activity of inhibitory intracortical mechanisms. Trial registration number: U1111-1173-1946 (Registro Brasileiro de Ensaios Clínicos; http://www.ensaiosclinicos.gov.br/ )


2020 ◽  
Author(s):  
Pramudika Nirmani Kariyawasam ◽  
Shinya Suzuki ◽  
Susumu Yoshida

Abstract BackgroundBilateral motor training (BMT) is a useful method to modify the excitability of the corticospinal system. The effects of artificial symmetrical movement on corticospinal excitability through functional electrical stimulation (FES) or transcranial magnetic stimulation (TMS) have not been reported. Therefore, we compared motor-evoked potentials (MEPs) following TMS over the ipsilateral primary motor cortex (M1) of voluntary movements after conventional BMT and repetitive artificial symmetrical movements generated through FES and TMS.MethodsSurface electromyograms of the abductor pollicis brevis (APB) muscles were recorded bilaterally in 12 healthy participants. Three sessions with different protocols were conducted: (1) bilateral finger training (BFT) involving bilateral thumb abduction, (2) right APB-triggered TMS of the ipsilateral M1 (APB-triggered i-TMS), and (3) right APB-triggered contralateral median nerve stimulation (APB-triggered c-MNS). Each protocol consisted of 360 trials for 30 min. Resting motor threshold (RMT), MEPs induced by single-pulse TMS, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) induced by paired-pulse TMS were assessed as outcome measures at baseline and at 0, 20, 40, and 60 min after intervention.ResultsRMT showed no significant effect of intervention, time, or interaction. MEP amplitude showed a significant effect with time. MEP amplitude significantly increased at 0, 20, and 40 min post-intervention in BFT; at 0, 20, 40, and 60 min post-intervention in APB-triggered i-TMS; and at 20 and 40 min post-intervention in APB-triggered c-MNS in comparison to the baseline values. SICI was significantly decreased at 0 min post-intervention in the BFT and APB-triggered i-TMS protocols. ICF was significantly increased at 0 min post-intervention in the BFT and at 20 min post-intervention in the APB-triggered c-MNS protocol.ConclusionThe main finding of the present study was the long-lasting increase in MEP amplitude in all three mirror-symmetrical movement protocols. The observed changes are long-lasting and comparatively strong. However, the underlying neural mechanisms seem to be slightly different across the three protocols. Thus, whether voluntarily or artificially caused, repetitive symmetrical mirror movements enhance corticospinal excitability.


2020 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Shinya Douchi ◽  
Kodai Suzuki ◽  
Kosuke Oku ◽  
Nobuhiko Mori ◽  
...  

This study aimed to investigate whether cerebellar transcranial magnetic stimulation (C-TMS) affected the cortical silent period (cSP) induced by TMS over the primary motor cortex (M1) and the effect of interstimulus interval (ISI) on cerebellar conditioning and TMS to the left M1 (M1-TMS). Fourteen healthy adult participants were instructed to control the abduction force of the right index finger to 20% of the maximum voluntary contraction. M1-TMS was delivered during this to induce cSP on electromyograph of the right first dorsal interosseous muscle. TMS over the right cerebellum (C-TMS) was conducted prior to M1-TMS. In the first experiment, M1-TMS intensity was set to 1 or 1.3 × resting motor threshold (rMT) with 20-ms ISI. In the second experiment, the intensity was set to 1 × rMT with ISI of 0, 10, 20, 30, 40, 50, 60, 70, or 80 ms, and no-C-TMS trials were inserted. In results, cSP was significantly shorter in 1 × rMT condition than in 1.3 × rMT by C-TMS, and cSP was significantly shorter for ISI of 20–40 ms than for the no-C-TMS condition. Further, motor evoked potential for ISI40-60 ms were significantly reduced than that for ISI0. Thus, C-TMS may reduce cSP induced by M1-TMS with ISI of 20–40 ms.


2005 ◽  
Vol 101 (2) ◽  
pp. 575-586 ◽  
Author(s):  
Shikako Hayashi ◽  
Kuniyoshi Shimura ◽  
Tatsuya Kasai

Excitability changes of human primary motor cortex are assumed to be associated with motor learning processes. To examine motor behavioral and neural mechanisms in these processes, the adaptive motor learning processes of the index finger abduction were investigated using motor evoked potential (MEP) elicited from the first dorsal interosseous and extensor carpi radialis muscles. Practice effects were examined on changes of MEP amplitudes elicited from these muscles during motor imagery. Given general consensus that the MEP amplitude change during motor imagery is a useful parameter reflecting changes in excitability of the human primary motor cortex, the present results, that MEP amplitudes of both muscles increased with repeated practice by the index finger abduction and that magnitudes of MEP amplitudes of both muscles (motor learning curves) were clearly different, suggested that participation of the muscles performing the index finger abduction gradually changed with practice. Short-term plastic changes of human primary motor cortex occur with repetitive practice and such adaptive change in human primary motor cortex is expressed in human voluntary movement that becomes more automatic.


2012 ◽  
Vol 116 (2) ◽  
pp. 453-459 ◽  
Author(s):  
Andrei V. Chistyakov ◽  
Hava Hafner ◽  
Alon Sinai ◽  
Boris Kaplan ◽  
Menashe Zaaroor

Object Previous studies have shown a close association between frontal lobe dysfunction and gait disturbance in idiopathic normal-pressure hydrocephalus (iNPH). A possible mechanism linking these impairments could be a modulation of corticospinal excitability. The aim of this study was 2-fold: 1) to determine whether iNPH affects corticospinal excitability; and 2) to evaluate changes in corticospinal excitability following ventricular shunt placement in relation to clinical outcome. Methods Twenty-three patients with iNPH were examined using single- and paired-pulse transcranial magnetic stimulation of the leg motor area before and 1 month after ventricular shunt surgery. The parameters of corticospinal excitability assessed were the resting motor threshold (rMT), motor evoked potential/M-wave area ratio, central motor conduction time, intracortical facilitation, and short intracortical inhibition (SICI). The results were compared with those obtained in 8 age-matched, healthy volunteers, 19 younger healthy volunteers, and 9 age-matched patients with peripheral neuropathy. Results Significant reduction of the SICI associated with a decrease of the rMT was observed in patients with iNPH at baseline evaluation. Ventricular shunt placement resulted in significant enhancement of the SICI and increase of the rMT in patients who markedly improved, but not in those who failed to improve. Conclusions This study demonstrates that iNPH affects corticospinal excitability, causing disinhibition of the motor cortex. Recovery of corticospinal excitability following ventricular shunt placement is correlated with clinical improvement. These findings support the view that reduced control of motor output, rather than impairment of central motor conduction, is responsible for gait disturbances in patients with iNPH.


Sign in / Sign up

Export Citation Format

Share Document