Electroacupuncture modulates cortical excitability in a manner dependent on the parameters used

2021 ◽  
pp. 096452842110575
Author(s):  
Francisco Xavier de Brito ◽  
Cleber Luz-Santos ◽  
Janine Ribeiro Camatti ◽  
Rodrigo Jorge de Souza da Fonseca ◽  
Giovana Suzarth ◽  
...  

Introduction: There is evidence that electroacupuncture (EA) acts through the modulation of brain activity, but little is known about its influence on corticospinal excitability of the primary motor cortex (M1). Objective: To investigate the influence of EA parameters on the excitability of M1 in healthy individuals. Methods: A parallel, double blind, randomized controlled trial in healthy subjects, evaluating the influence of an EA intervention on M1 excitability. Participants had a needle inserted at LI4 in the dominant hand and received electrical stimulation of different frequencies (10 or 100 Hz) and amplitude (sensory or motor threshold) for 20 min. In the control group, only a brief (30 s) electrical stimulation was applied. Single and paired pulse transcranial magnetic stimulation coupled with electromyography was applied before and immediately after the EA intervention. Resting motor threshold, motor evoked potential, short intracortical inhibition and intracortical facilitation were measured. Results: EA increased corticospinal excitability of M1 compared to the control group only when administered with a frequency of 100 Hz at the sensory threshold ( p < 0.05). There were no significant changes in the other measures. Conclusion: The results suggest that EA with an intensity level at the sensorial threshold and 100 Hz frequency increases the corticospinal excitability of M1. This effect may be associated with a decrease in the activity of inhibitory intracortical mechanisms. Trial registration number: U1111-1173-1946 (Registro Brasileiro de Ensaios Clínicos; http://www.ensaiosclinicos.gov.br/ )

2020 ◽  
Author(s):  
Melina Engelhardt ◽  
Darko Komnenić ◽  
Fabia Roth ◽  
Leona Kawelke ◽  
Carsten Finke ◽  
...  

AbstractThe physiological mechanisms of corticospinal excitability and factors influencing its measurement with transcranial magnetic stimulation are still poorly understood. A recent study reported an impact of functional connectivity between the primary motor cortex and dorsal premotor cortex on the resting motor threshold of the dominant hemisphere. We aimed to replicate these findings in a larger sample of 38 healthy right-handed subjects with data from both hemispheres. Resting-state functional connectivity was assessed between the primary motor cortex and five a-priori defined motor-relevant regions on each hemisphere as well as interhemispherically between both primary motor cortices. Following the procedure by the original authors, we included age, the cortical grey matter volume and coil to cortex distance as further predictors in the analysis. We report replication models for the dominant hemisphere as well as an extension to data from both hemispheres and support the results with Bayes factors. Functional connectivity between the primary motor cortex and dorsal premotor cortex did not explain variability in the resting motor threshold and we obtained moderate evidence for the absence of this effect. In contrast, coil to cortex distance could be confirmed as an important predictor with strong evidence. These findings contradict the previously proposed effect, thus questioning the notion of the dorsal premotor cortex playing a major role in modifying corticospinal excitability.


Author(s):  
Richard G. Carson ◽  
Antonio Capozio ◽  
Emmet McNickle ◽  
Alexander T. Sack

Abstract Repeated pairing of transcranial magnetic stimulation (TMS) over left and right primary motor cortex (M1), at intensities sufficient to generate descending volleys, produces sustained increases in corticospinal excitability. In other paired associative stimulation (PAS) protocols, in which peripheral afferent stimulation is the first element, changes in corticospinal excitability achieved when the second stimulus consists of brief bursts of transcranial alternating current stimulation (tACS), are comparable to those obtained if TMS is used instead (McNickle and Carson 2015). The present aim was to determine whether associative effects are induced when the first stimulus of a cortico-cortical pair is tACS, or alternatively subthreshold TMS. Bursts of tACS (500 ms; 140 Hz; 1 mA) were associated (180 stimulus pairs) with single magnetic stimuli (120% resting motor threshold rMT) delivered over the opposite (left) M1. The tACS ended 6 ms prior to the TMS. In a separate condition, TMS (55% rMT) was delivered to right M1 6 ms before (120% rMT) TMS was applied over left M1. In a sham condition, TMS (120% rMT) was delivered to left M1 only. The limitations of null hypothesis significance testing are well documented. We therefore employed Bayes factors to assess evidence in support of experimental hypotheses—defined precisely in terms of predicted effect sizes, that these two novel variants of PAS increase corticospinal excitability. Although both interventions induced sustained (~ 20–30 min) increases in corticospinal excitability, the evidence in support of the experimental hypotheses (over specified alternatives) was generally greater for the paired TMS-TMS than the tACS-TMS conditions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Melina Engelhardt ◽  
Darko Komnenić ◽  
Fabia Roth ◽  
Leona Kawelke ◽  
Carsten Finke ◽  
...  

The physiological mechanisms of corticospinal excitability and factors influencing its measurement with transcranial magnetic stimulation are still poorly understood. A recent study reported an impact of functional connectivity (FC) between the primary motor cortex (M1) and the dorsal premotor cortex (PMd) on the resting motor threshold (RMT) of the dominant hemisphere. We aimed to replicate these findings in a larger sample of 38 healthy right-handed subjects with data from both hemispheres. Resting-state FC was assessed between the M1 and five a priori defined motor-relevant regions on each hemisphere as well as interhemispherically between both primary motor cortices. Following the procedure by the original authors, we included age, cortical gray matter volume, and coil-to-cortex distance (CCD) as further predictors in the analysis. We report replication models for the dominant hemisphere as well as an extension to data from both hemispheres and support the results with Bayes factors. FC between the M1 and the PMd did not explain the variability in the RMT, and we obtained moderate evidence for the absence of this effect. In contrast, CCD could be confirmed as an important predictor with strong evidence. These findings contradict the previously proposed effect, thus questioning the notion of the PMd playing a major role in modifying corticospinal excitability.


2012 ◽  
Vol 116 (2) ◽  
pp. 453-459 ◽  
Author(s):  
Andrei V. Chistyakov ◽  
Hava Hafner ◽  
Alon Sinai ◽  
Boris Kaplan ◽  
Menashe Zaaroor

Object Previous studies have shown a close association between frontal lobe dysfunction and gait disturbance in idiopathic normal-pressure hydrocephalus (iNPH). A possible mechanism linking these impairments could be a modulation of corticospinal excitability. The aim of this study was 2-fold: 1) to determine whether iNPH affects corticospinal excitability; and 2) to evaluate changes in corticospinal excitability following ventricular shunt placement in relation to clinical outcome. Methods Twenty-three patients with iNPH were examined using single- and paired-pulse transcranial magnetic stimulation of the leg motor area before and 1 month after ventricular shunt surgery. The parameters of corticospinal excitability assessed were the resting motor threshold (rMT), motor evoked potential/M-wave area ratio, central motor conduction time, intracortical facilitation, and short intracortical inhibition (SICI). The results were compared with those obtained in 8 age-matched, healthy volunteers, 19 younger healthy volunteers, and 9 age-matched patients with peripheral neuropathy. Results Significant reduction of the SICI associated with a decrease of the rMT was observed in patients with iNPH at baseline evaluation. Ventricular shunt placement resulted in significant enhancement of the SICI and increase of the rMT in patients who markedly improved, but not in those who failed to improve. Conclusions This study demonstrates that iNPH affects corticospinal excitability, causing disinhibition of the motor cortex. Recovery of corticospinal excitability following ventricular shunt placement is correlated with clinical improvement. These findings support the view that reduced control of motor output, rather than impairment of central motor conduction, is responsible for gait disturbances in patients with iNPH.


2012 ◽  
Vol 71 (suppl_1) ◽  
pp. ons104-ons115 ◽  
Author(s):  
Kathleen Seidel ◽  
Jürgen Beck ◽  
Lennart Stieglitz ◽  
Philippe Schucht ◽  
Andreas Raabe

Abstract BACKGROUND: Microsurgery within eloquent cortex is a controversial approach because of the high risk of permanent neurological deficit. Few data exist showing the relationship between the mapping stimulation intensity required for eliciting a muscle motor evoked potential and the distance to the motor neurons; furthermore, the motor threshold at which no deficit occurs remains to be defined. OBJECTIVE: To evaluate the safety of low threshold motor evoked potential mapping for tumor resection close to the primary motor cortex. METHODS: Fourteen patients undergoing tumor surgery were included. Motor threshold was defined as the stimulation intensity that elicited motor evoked potentials from target muscles (amplitude &gt; 30 μV). Monopolar high-frequency motor mapping with train-of-5 stimuli (HF-TOF; pulse duration = 500 microseconds; interstimulus interval = 4.0 milliseconds; frequency = 250 Hz) was used to determine motor response--negative sites where incision and dissection could be performed. At sites negative to 3-mA HF-TOF stimulation, the tumor was resected. RESULTS: HF-TOF mapping localized the motor neurons within the precentral gyrus by using variable, low-stimulation intensities. The lowest motor thresholds after final resection ranged from 3 to 6 mA, indicating close proximity of motor neurons. Postoperatively, 12 patients had no new motor deficit, 1 patient had a minor new temporary deficit (M4+, National Institutes of Health Stroke Scale 1), and another patient had a minor new permanent deficit (M4+, National Institutes of Health Stroke Scale 2). Thirteen patients had complete or gross total resection. CONCLUSION: These preliminary data demonstrate that a monopolar HF-TOF threshold &gt; 3 mA was not associated with a significant new motor deficit.


2009 ◽  
Vol 106 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Sarah Pirio Richardson ◽  
Mikhael Lomarev ◽  
Ejaz Shamim ◽  
Sabine Meunier ◽  
...  

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts × 10 repetitions, 10 sessions, 4 wk) at 70–80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater ( P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (Mmax), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Yang ◽  
Ines Eisner ◽  
Siqi Chen ◽  
Shaosong Wang ◽  
Fan Zhang ◽  
...  

While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.


2007 ◽  
Vol 97 (3) ◽  
pp. 2511-2515 ◽  
Author(s):  
Michelle L. Harris-Love ◽  
Monica A. Perez ◽  
Robert Chen ◽  
Leonardo G. Cohen

Interhemispheric inhibitory interactions (IHI) operate between homologous distal hand representations in primary motor cortex (M1). It is not known whether proximal arm representations exhibit comparable effects on their homologous counterparts. We studied IHI in different arm representations, targeting triceps brachii (TB, n = 13), first dorsal interosseous (FDI, n = 13), and biceps brachii (BB, n = 7) muscles in healthy volunteers. Transcranial magnetic stimulation test stimuli (TS) were delivered to M1 contralateral to the target muscle preceded 10 ms by a conditioning stimulus (CS) to the opposite M1 at 110–150% resting motor threshold (RMT). IHI was calculated as the ratio between motor-evoked potential (MEP) amplitudes in conditioned relative to unconditioned trials. Mean RMTs were 38.9, 46.9, and 46.0% of stimulator output in FDI, TB, and BB muscles, respectively. IHI was 0.45 ± 0.41 (FDI), 0.78 ± 0.38 (TB), and 0.52 ± 0.32 (BB, P < 0.01) when test MEP amplitudes were matched and 0.28 ± 0.17 (FDI) and 0.85 ± 0.31 (TB, P < 0.05) when TS intensities expressed as percentage RMT were matched. Significant IHI ( P < 0.05) was identified with minimal CS intensities (expressed as percentage stimulator output) in the 30 s for FDI, 60 s for TB, and 40 s for BB. Additionally, a CS of roughly 120% RMT suppressed the test MEP but not a test H-reflex in BB, suggesting IHI observed in BB is likely mediated by a supraspinal mechanism. We conclude that IHI differs between different arm muscle representations, comparable between BB and FDI but lesser for TB. This finding suggests the amount of IHI between different arm representations does not strictly follow a proximal-to-distal gradient, but may be related to the role of each muscle in functional movement synergies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guiyuan Cai ◽  
Manfeng Wu ◽  
Qian Ding ◽  
Tuo Lin ◽  
Wanqi Li ◽  
...  

Transcranial magnetic stimulation (TMS) has a wide range of clinical applications, and there is growing interest in neural oscillations and corticospinal excitability determined by TMS. Previous studies have shown that corticospinal excitability is influenced by fluctuations of brain oscillations in the sensorimotor region, but it is unclear whether brain network activity modulates corticospinal excitability. Here, we addressed this question by recording electroencephalography (EEG) and TMS measurements in 32 healthy individuals. The resting motor threshold (RMT) and active motor threshold (AMT) were determined as markers of corticospinal excitability. The least absolute shrinkage and selection operator (LASSO) was used to identify significant EEG metrics and then correlation analysis was performed. The analysis revealed that alpha2 power in the sensorimotor region was inversely correlated with RMT and AMT. Innovatively, graph theory was used to construct a brain network, and the relationship between the brain network and corticospinal excitability was explored. It was found that the global efficiency in the theta band was positively correlated with RMT. Additionally, the global efficiency in the alpha2 band was negatively correlated with RMT and AMT. These findings indicated that corticospinal excitability can be modulated by the power spectrum in sensorimotor regions and the global efficiency of functional networks. EEG network analysis can provide a useful supplement for studying the association between EEG oscillations and corticospinal excitability.


2020 ◽  
Vol 12 (2) ◽  
pp. 169-174
Author(s):  
Tomoo Mano ◽  
Satoshi Kuru

Subacute myelo-optico-neuropathy (SMON) is caused by the ingestion of clioquinol (5-chloro-7-iodo-8-hydroxyquinoline), which is an intestinal antibacterial drug. Patients with SMON typically suffer from abnormal dysesthesia in the lower limbs, which cannot explain the mechanism only in pathology and electrophysiology. Neuromodulation therapies are increasingly being investigated as a means of alleviating abnormal sensory disturbances. We report here the response to repetitive transcranial magnetic stimulation (rTMS) for dysesthesia in a patient with SMON. The patient underwent rTMS treatment once per week for 12 weeks. rTMS was administered at 10 Hz, 90% of the resting motor threshold over the bilateral primary motor cortex foot area, for a total of 1,500 stimuli per day. After the treatment had finished at 12 weeks, the abnormal dysesthesia gradually declined. At first, there were improvements only in the area with a feeling of adherence. Later, this sensation was eliminated. Three months following the application, most of the feeling of adherence had disappeared and the feeling of tightness was slightly reduced. In contrast, the throbbing feeling had not changed during this period. Dysesthesia may indicate a process of central sensitization, which would contribute to chronic neuromuscular dysfunction. This case suggests that rTMS is a promising therapeutic application for dysesthesia.


Sign in / Sign up

Export Citation Format

Share Document