scholarly journals The Brain Structure and Intrinsic Characters of Falsification Thinking in Conditional Proposition Testing

2021 ◽  
Vol 15 ◽  
Author(s):  
Meng Zhang ◽  
Li Wang ◽  
Feng Zou ◽  
Yufeng Wang ◽  
Xin Wu

Wason's selection task (WST) as a representative of the field of conditional proposition testing has been explored by multiple disciplines for more than 50 years, but the neural basis of its key falsification thinking remains unclear. Considering that the accuracy of individuals in WST has stability over time, we believe that falsification thinking has a specific brain structural basis and intrinsic neural characteristics. To test this hypothesis, we studied individuals who were able to complete the WST using T1-weighted MRI (using voxel-based morphology (VBM) analysis) and resting electroencephalogram (EEG) (using microstate analysis, which can reflect stable cognitive characteristics of individuals) techniques. First, VBM analysis found that, compared with the verification group, the gray matter volume (GMV) of the left inferior temporal gyrus and the right superior temporal region of the falsification group was larger, whereas the GMV in the cerebellum of the verification group was significantly larger than that of the falsification group. Subsequently, the results of the microstate analysis of the resting EEG data showed that the contribution of class A of the falsification group, which is closely related to the language network, is significantly higher than that of the verification group. Our structural MRI and resting EEG results consistently show that the structure and intrinsic activity pattern of the temporal lobe in individuals with falsification thinking are specific. Furthermore, the findings may provide potential insights into the role of the temporal lobe (which is also a brain region of language processing) in thought.

Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

An adequate description of the neural basis of language processing must consider the entire network both with respect to its structural white matter connections and the functional connectivities between the different brain regions as the information has to be sent between different language-related regions distributed across the temporal and frontal cortex. This chapter discusses the white matter fiber bundles that connect the language-relevant regions. The chapter is broken into three sections. In the first, we look at the white matter fiber tracts connecting the language-relevant regions in the frontal and temporal cortices; in the second, the ventral and dorsal pathways in the right hemisphere that connect temporal and frontal regions; and finally in the third, the two syntax-relevant and (at least) one semantic-relevant neuroanatomically-defined networks that sentence processing is based on. From this discussion, it becomes clear that online language processing requires information transfer via the long-range white matter fiber pathways that connect the language-relevant brain regions within each hemisphere and between hemispheres.


2020 ◽  
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J. Lythgoe ◽  
...  

AbstractCigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because non-daily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 non-smokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent 1H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural MRI to determine whole-brain gray matter volume. Compared to non-smokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol, and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.


2017 ◽  
Author(s):  
B. Garcin ◽  
M. Urbanski ◽  
M. Thiebaut De Schotten ◽  
R. Levy ◽  
E. Volle

AbstractCategorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the grey matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.HighlightsAnterior temporal lobe morphometry correlates with categorization performancesSemantic is associated with a more rostral temporal region than shape categorizationSemantic categorization performances are associated with right temporal connections


2020 ◽  
Vol 12 ◽  
Author(s):  
Yasuharu Yamamoto ◽  
Bun Yamagata ◽  
Jinichi Hirano ◽  
Ryo Ueda ◽  
Hiroshi Yoshitake ◽  
...  

In developed countries, the number of traffic accidents caused by older drivers is increasing. Approximately half of the older drivers who cause fatal accidents are cognitively normal. Thus, it is important to identify older drivers who are cognitively normal but at high risk of causing fatal traffic accidents. However, no standardized method for assessing the driving ability of older drivers has been established. We aimed to establish an objective assessment of driving ability and to clarify the neural basis of unsafe driving in healthy older people. We enrolled 32 healthy older individuals aged over 65 years and classified unsafe drivers using an on-road driving test. We then utilized a machine learning approach to distinguish unsafe drivers from safe drivers based on clinical features and gray matter volume data. Twenty-one participants were classified as safe drivers and 11 participants as unsafe drivers. A linear support vector machine classifier successfully distinguished unsafe drivers from safe drivers with 87.5% accuracy (sensitivity of 63.6% and specificity of 100%). Five parameters (age and gray matter volume in four cortical regions, including the left superior part of the precentral sulcus, the left sulcus intermedius primus [of Jensen], the right orbital part of the inferior frontal gyrus, and the right superior frontal sulcus), were consistently selected as features for the final classification model. Our findings indicate that the cortical regions implicated in voluntary orienting of attention, decision making, and working memory may constitute the essential neural basis of driving behavior.


2012 ◽  
Vol 24 (8) ◽  
pp. 1766-1778 ◽  
Author(s):  
Maya Visser ◽  
Elizabeth Jefferies ◽  
Karl V. Embleton ◽  
Matthew A. Lambon Ralph

Most contemporary theories of semantic memory assume that concepts are formed from the distillation of information arising in distinct sensory and verbal modalities. The neural basis of this distillation or convergence of information was the focus of this study. Specifically, we explored two commonly posed hypotheses: (a) that the human middle temporal gyrus (MTG) provides a crucial semantic interface given the fact that it interposes auditory and visual processing streams and (b) that the anterior temporal region—especially its ventral surface (vATL)—provides a critical region for the multimodal integration of information. By utilizing distortion-corrected fMRI and an established semantic association assessment (commonly used in neuropsychological investigations), we compared the activation patterns observed for both the verbal and nonverbal versions of the same task. The results are consistent with the two hypotheses simultaneously: Both MTG and vATL are activated in common for word and picture semantic processing. Additional planned, ROI analyses show that this result follows from two principal axes of convergence in the temporal lobe: both lateral (toward MTG) and longitudinal (toward the anterior temporal lobe).


2021 ◽  
Vol 12 ◽  
Author(s):  
Zongxia Lv ◽  
Zirong Chen ◽  
Wei Ye ◽  
Xiaomin Pang ◽  
Liluo Nie ◽  
...  

Visuospatial working memory (VSWM) impairment is common in patients with right temporal lobe epilepsy (rTLE). The posterior hippocampus is critical for spatial memory, but the contributions of the different subfields to VSWM deficits remain unclear. Forty-six rTLE patients and 42 healthy controls (HCs) were recruited. Resting-state fMRI (rsfMRI) and structural MRI scans were administered, followed by a VSWM_Nback test. The right posterior hippocampus was automatically segmented, and the surface-based functional connectivity (SBFC) of the subiculum (Sub), CA1, CA3, dentate gyrus (DG), hippocampal tail, and right entorhinal cortex (EC) were compared between groups. Correlation analysis was performed between the altered SBFC and VSWM_Nback scores for rTLE patients. The results showed that rTLE patients underperformed in the VSWM_Nback test, with longer mean reaction time of accurate response (ACCmeanRT) in 0back and 2back condition, lower hit rate (HR) and higher false alarm rate (FAR) in 2back condition. Compared with HCs, the rCA3 in the rTLE group exhibited decreased SBFC with inferior parietal cortex (IPC), temporal lateral cortex (TLC), and posterior visual cortex (PVC) in the right hemisphere as well as the bilateral dorsolateral prefrontal cortex (DLPFC). The SBFC of the rEC and right anterior cingulate cortex (rACC) increased in the rTLE group. Within the rTLE group, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC were correlated with worse VSWM performance. Therefore, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC might be the critical aberrant FC pattern reflecting VSWM impairment in rTLE patients. The mechanism might involve functional disruption between the core subsystem and the medial temporal subsystem of the default mode network (DMN).


2020 ◽  
Author(s):  
Jixing Li ◽  
Liina Pylkkänen

AbstractAlthough composing two words into a complex representation (e.g., “coffee cake”) is conceptually different from forming associations between a pair of words (e.g., “coffee, cake”), the brain regions supporting semantic composition have also been implicated for associative encoding. Here, we adopted a two-word magnetoencephalography (MEG) paradigm which varies compositionality (“French/Korean cheese” vs. “France/Korea cheese”) and strength of association (“France/French cheese” vs. “Korea/Korean cheese”) between the two words. We applied both univariate regression analyses and multivariate pattern classification to the source-localized MEG data in a bilateral language network. We show that the left anterior and middle temporal lobe (LMTL) are distinctively modulated by semantic composition and semantic association. Specifically, the LATL is mostly sensitive to high-association compositional phrases, while the LMTL responds more to low-association compositional phrases. Pattern-based directed connectivity analyses further revealed a continuous information flow from the anterior to the middle temporal region, suggesting that the integration of adjective and noun properties originated earlier in the LATL is consistently delivered to the LMTL when the complex meaning is newly encountered. Taken together, our findings shed light into a functional dissociation within the left temporal lobe for compositional and distributional semantic processing.Significance StatementPrior studies on semantic composition and associative encoding have been conducted independently within the subfields of language and memory, and they typically adopt similar two-word experimental paradigms. However, no direct comparison has been made on the neural substrates of the two processes. The current study relates the two streams of literature, and appeals to audiences in both subfields within cognitive neuroscience. Disentangling the neural computations for semantic composition and association also offers insight into modeling compositional and distributional semantics, which has been the subject of much discussion in natural language processing and cognitive science.


2017 ◽  
Vol 29 (7) ◽  
pp. 1147-1161 ◽  
Author(s):  
Shima Seyed-Allaei ◽  
Zahra Nasiri Avanaki ◽  
Bahador Bahrami ◽  
Tim Shallice

An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35–39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex.


2016 ◽  
Author(s):  
Vitória Piai ◽  
Lars Meyer ◽  
Nina F. Dronkers ◽  
Robert T. Knight

AbstractOur understanding of neuroplasticity following stroke is predominantly based on neuroimaging measures that cannot address the subsecond neurodynamics of impaired language processing. We combined behavioral and electrophysiological measures and structural-connectivity estimates to characterize neuroplasticity underlying successful compensation of language abilities after left-hemispheric stroke. We recorded the electroencephalogram from patients with stroke lesions to the left temporal lobe and matched controls during context-driven word retrieval. Participants heard lead-in sentences that either constrained the final word (“He locked the door with the”) or not (“She walked in here with the”). The last word was shown as a picture to be named. We conducted individual-participant analyses and focused on oscillatory power as a subsecond indicator of a brain region's functional neurophysiological computations. All participants named pictures faster following constrained than unconstrained sentences, except for two patients, who had extensive damage to the left temporal lobe. Left-lateralized alpha-beta oscillatory power decreased in controls pre-picture presentation for constrained relative to unconstrained contexts. In patients, the alpha-beta power decreases were observed with the same time course as in controls but were lateralized to the intact right hemisphere. The right lateralization depended on the probability of white-matter connections between the bilateral temporal lobes. The two patients who performed poorly behaviorally showed no alpha-beta power decreases. Our findings suggest that incorporating direct measures of neural activity into investigations of neuroplasticity can provide important neural markers to help predict language recovery, assess the progress of neurorehabilitation, and delineate targets for therapeutic neuromodulation.


Mindfulness ◽  
2021 ◽  
Author(s):  
Ramesh Babu M G ◽  
Rajagopal Kadavigere ◽  
Prakashini Koteshwara ◽  
Brijesh Sathian ◽  
Kiranmai S. Rai

Abstract Objectives Many studies on various meditation types have reported regional gray matter volume changes using voxel-based morphometric analysis of structural MRI, but there are no studies done on structural MRI of Rajyoga meditators. The objective of the present study is to analyze and compare gray matter volume changes of brain regions in meditators and non-meditators and further study the effects of meditation experience on alterations in various brain regions. These regions were then correlated and compared to positive thought scores of participants. Methods Forty participants in each group (closely matched for age, gender, and handedness) were selected after obtaining their informed consent, and voxel-based morphometric analysis was carried out using their structural MRI scans. Results On voxel-wise comparison of the brain scans, meditators were observed to have significantly higher global gray matter volume and significant regional gray matter volume increases in the right superior frontal gyrus, left inferior orbitofrontal cortex, left inferior parietal gyrus, left posterior cerebellum, left middle temporal gyrus, bilateral precuneus, and cuneus. Additionally, long-term meditators particularly had significantly higher positive thinking scores compared to non-meditators. On multiple regression analysis, gray matter volume of the left superior parietal gyrus and left inferior parietal gyrus had a positive association, whereas the left posterior cerebellum had a negative association with hours of meditation experience. With the positive thoughts score, a significant relationship was found in the right superior temporal gyrus in meditators. Conclusions These findings indicate that Rajyoga meditation experience/practice enhances gray matter volume of specific brain regions and positive thoughts.


Sign in / Sign up

Export Citation Format

Share Document