scholarly journals Model-Based Prediction of Operation Consequences When Driving a Car to Compensate for a Partially Restricted Visual Field by A-Pillars

2021 ◽  
Vol 15 ◽  
Author(s):  
Sayako Ueda ◽  
Toshihisa Sato ◽  
Takatsune Kumada

The partial restriction of a driver’s visual field by the physical structure of the car (e.g., the A-pillar) can lead to unsafe situations where steering performance is degraded. Drivers require both environmental information and visual feedback regarding operation consequences. When driving with a partially restricted visual field, and thus restricted visual feedback, drivers may predict operation consequences using a previously acquired internal model of a car. To investigate this hypothesis, we conducted a tracking and driving task in which visual information was restricted to varying degrees. In the tracking task, participants tracked a moving target on a computer screen with visible and invisible cursors. In the driving task, they drove a real car with or without the ability to see the distant parts of a visual field. Consequently, we found that the decrease in tracking performance induced by visual feedback restriction predicted the decrease in steering smoothness induced by visual field restriction, suggesting that model-based prediction was used in both tasks. These findings indicate that laboratory-based task performance can be used to identify drivers with low model-based prediction ability whose driving behavior is less optimal in restricted vision scenarios, even before they obtain a driver’s license. However, further studies are required to examine the underlying neural mechanisms and to establish the generalizability of these findings to more realistic settings.

2000 ◽  
Vol 84 (4) ◽  
pp. 1708-1718 ◽  
Author(s):  
Andrew B. Slifkin ◽  
David E. Vaillancourt ◽  
Karl M. Newell

The purpose of the current investigation was to examine the influence of intermittency in visual information processes on intermittency in the control continuous force production. Adult human participants were required to maintain force at, and minimize variability around, a force target over an extended duration (15 s), while the intermittency of on-line visual feedback presentation was varied across conditions. This was accomplished by varying the frequency of successive force-feedback deliveries presented on a video display. As a function of a 128-fold increase in feedback frequency (0.2 to 25.6 Hz), performance quality improved according to hyperbolic functions (e.g., force variability decayed), reaching asymptotic values near the 6.4-Hz feedback frequency level. Thus, the briefest interval over which visual information could be integrated and used to correct errors in motor output was approximately 150 ms. The observed reductions in force variability were correlated with parallel declines in spectral power at about 1 Hz in the frequency profile of force output. In contrast, power at higher frequencies in the force output spectrum were uncorrelated with increases in feedback frequency. Thus, there was a considerable lag between the generation of motor output corrections (1 Hz) and the processing of visual feedback information (6.4 Hz). To reconcile these differences in visual and motor processing times, we proposed a model where error information is accumulated by visual information processes at a maximum frequency of 6.4 per second, and the motor system generates a correction on the basis of the accumulated information at the end of each 1-s interval.


1996 ◽  
Vol 67 (4) ◽  
pp. 416-423 ◽  
Author(s):  
Heather Carnahan ◽  
Craig Hall ◽  
Timothy D. Lee

2006 ◽  
Vol 95 (2) ◽  
pp. 922-931 ◽  
Author(s):  
David E. Vaillancourt ◽  
Mary A. Mayka ◽  
Daniel M. Corcos

The cerebellum, parietal cortex, and premotor cortex are integral to visuomotor processing. The parameters of visual information that modulate their role in visuomotor control are less clear. From motor psychophysics, the relation between the frequency of visual feedback and force variability has been identified as nonlinear. Thus we hypothesized that visual feedback frequency will differentially modulate the neural activation in the cerebellum, parietal cortex, and premotor cortex related to visuomotor processing. We used functional magnetic resonance imaging at 3 Tesla to examine visually guided grip force control under frequent and infrequent visual feedback conditions. Control conditions with intermittent visual feedback alone and a control force condition without visual feedback were examined. As expected, force variability was reduced in the frequent compared with the infrequent condition. Three novel findings were identified. First, infrequent (0.4 Hz) visual feedback did not result in visuomotor activation in lateral cerebellum (lobule VI/Crus I), whereas frequent (25 Hz) intermittent visual feedback did. This is in contrast to the anterior intermediate cerebellum (lobule V/VI), which was consistently active across all force conditions compared with rest. Second, confirming previous observations, the parietal and premotor cortices were active during grip force with frequent visual feedback. The novel finding was that the parietal and premotor cortex were also active during grip force with infrequent visual feedback. Third, right inferior parietal lobule, dorsal premotor cortex, and ventral premotor cortex had greater activation in the frequent compared with the infrequent grip force condition. These findings demonstrate that the frequency of visual information reduces motor error and differentially modulates the neural activation related to visuomotor processing in the cerebellum, parietal cortex, and premotor cortex.


2004 ◽  
Vol 44 (23) ◽  
pp. 2737-2744 ◽  
Author(s):  
Joceline Rogé ◽  
Thierry Pébayle ◽  
Elina Lambilliotte ◽  
Florence Spitzenstetter ◽  
Danièle Giselbrecht ◽  
...  
Keyword(s):  

Author(s):  
J. W. Li ◽  
Y. Ma ◽  
J. W. Jiang ◽  
W. D. Chen ◽  
N. Yu ◽  
...  

Abstract. Starting from the object-oriented idea, this paper analyses the existing event-based models and the logical relationship between behavioral cognition and events, and discusses the continuity of behavioral cognition on the time axis from the perspective of temporal and spatial cognition. A geospatial data model based on behavioral-event is proposed. The physical structure and logical structure of the model are mainly designed, and the four-dimensional model of “time, space, attribute and event” is constructed on the axis. The organic combination of the four models can well describe the internal mechanism and rules of geographical objects. The expression of data model based on behavior-event not only elaborates the basic information of geospatial objects, but also records the changes of related events caused by the changes of geographic Entities' behavior, and expresses the relationship between spatial and temporal objects before and after the changes of behavior cognition. This paper also designs an effective method to organize spatio-temporal data, so as to realize the effective management and analysis of spatio-temporal data and meet the requirements of storage, processing and mining of large spatio-temporal data.


2015 ◽  
Vol 28 (2) ◽  
pp. 241-249
Author(s):  
Fabiane Maria Klitzke dos Santos ◽  
Franciely Voltolini Mendes ◽  
Simone Suzuki Woellner ◽  
Noé Gomes Borges Júnior ◽  
Antonio Vinicius Soares

Introduction Hemiparetic Stroke patients have their daily activities affected by the balance impairment. Techniques that used visual information for training this impairment it seems to be effective. Objective To analyze the effects of the unstable balance board training and compare two ways of visual feedback: the biomechanical instrumentation and the mirror. Materials and methods Eight chronic hemiparetic Stroke patients participated in the research, randomized in two groups. The first group (G1) accomplished the training with biomechanical instrumentation, and the second group (G2) trained in front of the mirror. Sixteen training sessions were done with feet together, and feet apart. The evaluation instruments that were used before and after the period of training were the Time Up and Go Test (TUGT), Berg Balance Scale (BBS) and the Instrumented Balance Board (IBB), that quantified the functional mobility, the balance and the posture control respectively. Results The TUGT showed significant results (p < 0.05) favorable to G1. Despite the results of BBS were significant for G2, the intergroup comparison did not reveal statistical significance. Both groups obtained decrease in levels of IBB oscillation, what can indicate a higher stability, however the results did not indicate statistical significance (p > 0.05). A strong correlation between all the applied tests was observed in this research. Conclusion Although the advantages found were different between the groups, in both it could be observed that the training brought benefits, with the transference to the functional mobility.


2015 ◽  
Vol 114 (3) ◽  
pp. 1577-1592 ◽  
Author(s):  
Barbara La Scaleia ◽  
Myrka Zago ◽  
Francesco Lacquaniti

Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience.


1966 ◽  
Vol 44 (2) ◽  
pp. 233-245
Author(s):  
G. A. HORRIDGE

1. A crab is held at the centre of an illuminated stationary striped drum or any visual field with strong contrasts. After a time all lights are turned off and the drum is moved in the dark. The light is restored when the drum is stationary in its new position. The animal responds by a movement of the eyes. 2. Stimuli of 0.5° over a dark period of 2 min. or 1° over 15 min. give a response. The response depends on the angle of the drum movement, and is slower in performance and less in total amount for longer periods of darkness. 3. On re-illumination the movement of the eye relative to the stationary drum is such that the visual field moves across the eye in the opposite direction to the eye's movement, but nevertheless the perception of small drum oscillations is not impaired. 4. When the visual feedback loop is opened by clamping the seeing eye and painting over the moving one, eye movements can be greater than drum movements, as in movement perception. Comparison of calculated with experimental closed-loop conditions shows that in the memory experiment there is no attenuation or amplification in the visual feedback loop. 5. Perception of very slow movements and stabilization of eye position could, but do not necessarily, depend on this accurate but short-lived directional memory.


Development ◽  
1981 ◽  
Vol 65 (1) ◽  
pp. 199-217
Author(s):  
C. Kennard

The extent, and the development, of the ipsilateral retinothalamic projection in the frog Xenopus laevis have been studied using terminal degeneration and autoradiographic techniques. This ipsilateral projection derives only from those retinal areas receiving visual information from the binocular portion of the visual field. In Xenopus, the ipsilateral retinothalamic projection arises from a larger area of the retina than was found to be the case in earlier studies on Rana. This correlates with the fact that Xenopus has a larger binocular visual field than does Rana. The ipsilateral retinothalamic projection is just detectable at about stage 56 of larval life, considerably later than its contralateral counterpart. Experimental manipulation of the developing eye vesicle at early larval stages followed by histological studies of the ipsilateral retinothalamic projections showed, however, that the retinal areas which give rise to this projection are determined by stage 32 of larval life. Further studies, in which monocular enucleation was performed at different larval stages with subsequent examination of the retinothalamic projections from the remaining eye, indicated that the selective pattern of decussation and non-decussation of retinothalamic fibres at the optic chiasma does not require interactions, at the chiasma, between optic fibres from the two eyes.


Author(s):  
Elizabeth Schechter

The largest fibre tract in the human brain connects the two cerebral hemispheres. A ‘split-brain’ surgery severs this structure, sometimes together with other white matter tracts connecting the right hemisphere and the left. Split-brain surgeries have long been performed on non-human animals for experimental purposes, but a number of these surgeries were also performed on adult human beings in the second half of the twentieth century, as a medical treatment for severe cases of epilepsy. A number of these people afterwards agreed to participate in ongoing research into the psychobehavioural consequences of the procedure. These experiments have helped to show that the corpus callosum is a significant source of interhemispheric interaction and information exchange in the ‘neurotypical’ brain. After split-brain surgery, the two hemispheres operate unusually independently of each other in the realm of perception, cognition, and the control of action. For instance, each hemisphere receives visual information directly from the opposite (‘contralateral’) side of space, the right hemisphere from the left visual field and the left hemisphere from the right visual field. This is true of the normal (‘neurotypical’) brain too, but in the neurotypical case interhemispheric tracts allow either hemisphere to gain access to the information that the other has received. In a split-brain subject however the information more or less stays put in whatever hemisphere initially received it. And it isn’t just visual information that is confined to one hemisphere or the other after the surgery. Rather, after split-brain surgery, each hemisphere is the source of proprietary perceptual information of various kinds, and is also the source of proprietary memories, intentions, and aptitudes. Various notions of psychological unity or integration have always been central to notions of mind, personhood, and the self. Although split-brain surgery does not prevent interhemispheric interaction or exchange, it naturally alters and impedes it. So does the split-brain subject as a whole nonetheless remain a unitary psychological being? Or could there now be two such psychological beings within one human animal – sharing one body, one face, one voice? Prominent neuropsychologists working with the subjects have often appeared to argue or assume that a split-brain subject has a divided or disunified consciousness and even two minds. Although a number of philosophers agree, the majority seem to have resisted these conscious and mental ‘duality claims’, defending alternative interpretations of the split-brain experimental results. The sources of resistance are diverse, including everything from a commitment to the necessary unity of consciousness, to recognition of those psychological processes that remain interhemispherically integrated, to concerns about what the moral and legal consequences would be of recognizing multiple psychological beings in one body. On the other hand underlying most of these arguments against the various ‘duality’ claims is the simple fact that the split-brain subject does not appear to be two persons, but one – and there are powerful conceptual, social, and moral connections between being a unitary person on the one hand and having a unified consciousness and mind on the other.


Sign in / Sign up

Export Citation Format

Share Document