scholarly journals Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators

2021 ◽  
Vol 15 ◽  
Author(s):  
Henrik Lindén ◽  
Rune W. Berg

Networks in the spinal cord, which are responsible for the generation of rhythmic movements, commonly known as central pattern generators (CPGs), have remained elusive for decades. Although it is well-known that many spinal neurons are rhythmically active, little attention has been given to the distribution of firing rates across the population. Here, we argue that firing rate distributions can provide an important clue to the organization of the CPGs. The data that can be gleaned from the sparse literature indicate a firing rate distribution, which is skewed toward zero with a long tail, akin to a normal distribution on a log-scale, i.e., a “log-normal” distribution. Importantly, such a shape is difficult to unite with the widespread assumption of modules composed of recurrently connected excitatory neurons. Spinal modules with recurrent excitation has the propensity to quickly escalate their firing rate and reach the maximum, hence equalizing the spiking activity across the population. The population distribution of firing rates hence would consist of a narrow peak near the maximum. This is incompatible with experiments, that show wide distributions and a peak close to zero. A way to resolve this puzzle is to include recurrent inhibition internally in each CPG modules. Hence, we investigate the impact of recurrent inhibition in a model and find that the firing rate distributions are closer to the experimentally observed. We therefore propose that recurrent inhibition is a crucial element in motor circuits, and suggest that future models of motor circuits should include recurrent inhibition as a mandatory element.

2007 ◽  
Vol 97 (3) ◽  
pp. 2148-2158 ◽  
Author(s):  
Nathan P. Cramer ◽  
Ying Li ◽  
Asaf Keller

Using the rat vibrissa system, we provide evidence for a novel mechanism for the generation of movement. Like other central pattern generators (CPGs) that underlie many movements, the rhythm generator for whisking can operate without cortical inputs or sensory feedback. However, unlike conventional mammalian CPGs, vibrissa motoneurons (vMNs) actively participate in the rhythmogenesis by converting tonic serotonergic inputs into the patterned motor output responsible for movement of the vibrissae. We find that, in vitro, a serotonin receptor agonist, α-Me-5HT, facilitates a persistent inward current (PIC) and evokes rhythmic firing in vMNs. Within each motoneuron, increasing the concentration of α-Me-5HT significantly increases the both the magnitude of the PIC and the motoneuron's firing rate. Riluzole, which selectively suppresses the Na+ component of PICs at low concentrations, causes a reduction in both of these phenomena. The magnitude of this reduction is directly correlated with the concentration of riluzole. The joint effects of riluzole on PIC magnitude and firing rate in vMNs suggest that the two are causally related. In vivo we find that the tonic activity of putative serotonergic premotoneurons is positively correlated with the frequency of whisking evoked by cortical stimulation. Taken together, these results support the hypothesized novel mammalian mechanism for movement generation in the vibrissa motor system where vMNs actively participate in the rhythmogenesis in response to tonic drive from serotonergic premotoneurons.


2016 ◽  
Vol 371 (1685) ◽  
pp. 20150057 ◽  
Author(s):  
Paul S. Katz

Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.


2008 ◽  
Vol 100 (5) ◽  
pp. 2819-2824 ◽  
Author(s):  
Olivier White ◽  
Yannick Bleyenheuft ◽  
Renaud Ronsse ◽  
Allan M. Smith ◽  
Jean-Louis Thonnard ◽  
...  

In many nonprimate species, rhythmic patterns of activity such as locomotion or respiration are generated by neural networks at the spinal level. These neural networks are called central pattern generators (CPGs). Under normal gravitational conditions, the energy efficiency and the robustness of human rhythmic movements are due to the ability of CPGs to drive the system at a pace close to its resonant frequency. This property can be compared with oscillators running at resonant frequency, for which the energy is optimally exchanged with the environment. However, the ability of the CPG to adapt the frequency of rhythmic movements to new gravitational conditions has never been studied. We show here that the frequency of a rhythmic movement of the upper limb is systematically influenced by the different gravitational conditions created in parabolic flight. The period of the arm movement is shortened with increasing gravity levels. In weightlessness, however, the period is more dependent on instructions given to the participants, suggesting a decreased influence of resonant frequency. Our results are in agreement with a computational model of a CPG coupled to a simple pendulum under the control of gravity. We demonstrate that the innate modulation of rhythmic movements by CPGs is highly flexible across gravitational contexts. This further supports the involvement of CPG mechanisms in the achievement of efficient rhythmic arm movements. Our contribution is of major interest for the study of human rhythmic activities, both in a normal Earth environment and during microgravity conditions in space.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009677
Author(s):  
Jessica R. Parker ◽  
Alexander N. Klishko ◽  
Boris I. Prilutsky ◽  
Gennady S. Cymbalyuk

Mutually inhibitory populations of neurons, half-center oscillators (HCOs), are commonly involved in the dynamics of the central pattern generators (CPGs) driving various rhythmic movements. Previously, we developed a multifunctional, multistable symmetric HCO model which produced slow locomotor-like and fast paw-shake-like activity patterns. Here, we describe asymmetric features of paw-shake responses in a symmetric HCO model and test these predictions experimentally. We considered bursting properties of the two model half-centers during transient paw-shake-like responses to short perturbations during locomotor-like activity. We found that when a current pulse was applied during the spiking phase of one half-center, let’s call it #1, the consecutive burst durations (BDs) of that half-center increased throughout the paw-shake response, while BDs of the other half-center, let’s call it #2, only changed slightly. In contrast, the consecutive interburst intervals (IBIs) of half-center #1 changed little, while IBIs of half-center #2 increased. We demonstrated that this asymmetry between the half-centers depends on the phase of the locomotor-like rhythm at which the perturbation was applied. We suggest that the fast transient response reflects functional asymmetries of slow processes that underly the locomotor-like pattern; e.g., asymmetric levels of inactivation across the two half-centers for a slowly inactivating inward current. We compared model results with those of in-vivo paw-shake responses evoked in locomoting cats and found similar asymmetries. Electromyographic (EMG) BDs of anterior hindlimb muscles with flexor-related activity increased in consecutive paw-shake cycles, while BD of posterior muscles with extensor-related activity did not change, and vice versa for IBIs of anterior flexors and posterior extensors. We conclude that EMG activity patterns during paw-shaking are consistent with the proposed mechanism producing transient paw-shake-like bursting patterns found in our multistable HCO model. We suggest that the described asymmetry of paw-shaking responses could implicate a multifunctional CPG controlling both locomotion and paw-shaking.


2014 ◽  
Vol 37 (6) ◽  
pp. 562-563 ◽  
Author(s):  
Peter B. Marschik ◽  
Walter E. Kaufmann ◽  
Sven Bölte ◽  
Jeff Sigafoos ◽  
Christa Einspieler

AbstractResearch on acoustic communication and its underlying neurobiological substrates has led to new insights about the functioning of central pattern generators (CPGs). CPG-related atypicalities may point to brainstem irregularities rather than cortical malfunctions for early vocalizations/babbling. The “vocal pattern generator,” together with other CPGs, seems to have great potential in disentangling neurodevelopmental disorders and potentially predict neurological development.


1999 ◽  
Vol 11 (1) ◽  
pp. 91-101 ◽  
Author(s):  
L. F. Abbott ◽  
Peter Dayan

We study the impact of correlated neuronal firing rate variability on the accuracy with which an encoded quantity can be extracted from a population of neurons. Contrary to widespread belief, correlations in the variabilities of neuronal firing rates do not, in general, limit the increase in coding accuracy provided by using large populations of encoding neurons. Furthermore, in some cases, but not all, correlations improve the accuracy of a population code.


2002 ◽  
Vol 82 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Marilyn MacKay-Lyons

Abstract Neural networks in the spinal cord, referred to as “central pattern generators” (CPGs), are capable of producing rhythmic movements, such as swimming, walking, and hopping, even when isolated from the brain and sensory inputs. This article reviews the evidence for CPGs governing locomotion and addresses other factors, including supraspinal, sensory, and neuromodulatory influences, that interact with CPGs to shape the final motor output. Supraspinal inputs play a major role not only in initiating locomotion but also in adapting the locomotor pattern to environmental and motivational conditions. Sensory afferents involved in muscle and cutaneous reflexes have important regulatory functions in preserving balance and ensuring stable phase transitions in the locomotor cycle. Neuromodulators evoke changes in cellular and synaptic properties of CPG neurons, conferring flexibility to CPG circuits. Briefly addressed is the interaction of CPG networks to produce intersegmental coordination for locomotion. Evidence for CPGs in humans is reviewed, and although a comprehensive clinical review is not an objective, examples are provided of animal and human studies that apply knowledge of CPG mechanisms to improve locomotion. The final section deals with future directions in CPG research.


2009 ◽  
Vol 21 (5) ◽  
pp. 1335-1370 ◽  
Author(s):  
Renaud Ronsse ◽  
Dagmar Sternad ◽  
Philippe Lefèvre

Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby reflecting the higher-level cortical resources involved in the generation of such movements. This letter proposes a unified model for the generation of both rhythmic and discrete movements. We show that a physiologically motivated model of a CPG can not only generate simple rhythmic movements with only a small set of parameters, but can also produce discrete movements if the CPG is fed with an exponentially decaying phasic input. We further show that a particular coupling between two of these units can reproduce main findings on in-phase and antiphase stability. Finally, we propose an integrated model of combined rhythmic and discrete movements for the two hands. These movement classes are sequentially addressed in this letter with increasing model complexity. The model variations are discussed in relation to the degree of recruitment of the higher-level cortical resources, necessary for such movements.


1981 ◽  
Vol 59 (7) ◽  
pp. 727-732 ◽  
Author(s):  
Larry M. Jordan

Respiration, mastication, and locomotion are compared in terms of the contributions of events occurring at the motoneuron membrane and at premotoneuronal levels for the production of phasic gain changes of afferent effects. Data are presented which suggest that an inhibitory mechanism operating on limb motoneurons can prevent disruption of the locomotor pattern by proprioceptive input and that Ia inhibitory interneurons contribute to this rhythmic inhibition of both flexor and extensor motoneurons. Renshaw cell rhythmic activity during locomotion is described and discussed in terms of its possible role in gating of inputs to motoneurons.


Sign in / Sign up

Export Citation Format

Share Document