scholarly journals Identifying Fragmented Reading and Evaluating Its Influence on Cognition Based on Single Trial Electroencephalogram

2021 ◽  
Vol 15 ◽  
Author(s):  
Jingwen Feng ◽  
Bo Hu ◽  
Jingting Sun ◽  
Junpeng Zhang ◽  
Wen Wang ◽  
...  

Background: The use of social media daily could nurture a fragmented reading habit. However, little is known whether fragmented reading (FR) affects cognition and what are the underlying electroencephalogram (EEG) alterations it may lead to.Purpose: This study aimed to identify whether individuals have FR habits based on the single-trial EEG spectral features using machine learning (ML), as well as to find out the potential cognitive impairment induced by FR.Methods: Subjects were recruited through a questionnaire and divided into FR and noFR groups according to the time they spent on FR per day. Moreover, 64-channel EEG was acquired in Continuous Performance Task (CPT) and segmented into 0.5–1.5 s post-stimulus epochs under cue and background conditions. The sample sizes were as follows: FR in cue condition, 692 trials; noFR in cue condition, 688 trials; FR in background condition, 561 trials; noFR in background condition, 585 trials. For these single-trials, the relative power (RP) of six frequency bands [delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta1 (14–20 Hz), beta2 (21–29 Hz), lower gamma (30–40 Hz)] were extracted as features. After feature selection, the most important feature sets were fed into three ML models, namely Support-Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes to perform the identification of FR. RP of six frequency bands was also used as feature sets to conduct classification tasks.Results: The classification accuracy reached up to 96.52% in the SVM model under cue conditions. Specifically, among six frequency bands, the most important features were found in alpha and gamma bands. Gamma achieved the highest classification accuracy (86.69% for cue, 86.45% for background). In both conditions, alpha RP in central sites of FR was stronger than noFR (p < 0.001). Gamma RP in the frontal site of FR was weaker than noFR in the background condition (p < 0.001), while alpha RP in parieto-occipital sites of FR was stronger than noFR in the cue condition (p < 0.001).Conclusion: Fragmented reading can be identified based on single-trial EEG evoked by CPT using ML, and the RP of alpha and gamma may reflect the impairment on attention and working memory by FR. FR might lead to cognitive impairment and is worth further exploration.

2015 ◽  
Vol 8 (3) ◽  
pp. 1173-1182 ◽  
Author(s):  
H.-Y. Cheng ◽  
C.-C. Yu

Abstract. This work performs cloud classification on all-sky images. To deal with mixed cloud types in one image, we propose performing block division and block-based classification. In addition to classical statistical texture features, the proposed method incorporates local binary pattern, which extracts local texture features in the feature vector. The combined feature can effectively preserve global information as well as more discriminating local texture features of different cloud types. The experimental results have shown that applying the combined feature results in higher classification accuracy compared to using classical statistical texture features. In our experiments, it is also validated that using block-based classification outperforms classification on the entire images. Moreover, we report the classification accuracy using different classifiers including the k-nearest neighbor classifier, Bayesian classifier, and support vector machine.


2021 ◽  
Author(s):  
Haiqiang Duan ◽  
Chenyun Dai ◽  
Wei Chen

Abstract Background: The transmission of human body movements to other devices through wearable smart bracelets have attracted more and more attentions in the field of human-machine interface (HMI) applications. However, due to the limitation of the collection range of wearable bracelets, it is necessary to study the relationship between the superposition of wrist and finger motion and their cooperative motion to simplify the collection system of the device.Methods: The multi-channel high-density surface electromyogram (HD-sEMG) signal has high spatial resolution and can improve the accuracy of multi-channel fitting. In this study, we quantified the HD-sEMG forearm spatial activation features of 256 channels of hand movement, and performed a linear fitting of the quantified features of fingers and wrist movements to verify the linear superposition relationship between fingers and wrist cooperative movements and their independent movements. The most important thing is to classify and predict the results of the fitting and the actual measured fingers and wrist cooperative actions by four commonly used classifiers: Linear Discriminant Analysis (LDA) ,K-Nearest Neighbor (KNN) ,Support Vector Machine (SVM) and Random Forest (RF), and evaluate the performance of the four classifiers in gesture fitting in detail according to the classification results.Results: In a total of 12 kinds of synthetic gesture actions, in the three cases where the number of fitting channels was selected as 8, 32 and 64, four classifiers of LDA, SVM, RF and KNN are used for classification prediction. When the number of fitting channels was 8, the prediction accuracy of LDA classifier was 99.70%, the classification accuracy of KNN was 99.40%, the classification accuracy of SVM was 99.20%, and the classification accuracy of RF was 93.75%. When the number of fitting channels was 32, the accuracy of LDA was 98.51%, the classification accuracy of KNN was 97.92%, the accuracy of SVM is 96.73%, and the accuracy of RF was 86.61%. When the number of fitting channels is 64, the accuracy of LDA is 95.83%, the classification accuracy of KNN is 91.67%, the accuracy of SVM is 86.90%, and the accuracy of RF is 83.30%.Conclusion: It can be seen from the results that when the number of fitting channels is 8, the classification accuracy of the three classifiers of LDA, KNN and SVM is basically the same, but the time-consuming of SVM is very small. When the amount of data is large, the priority should be selected SVM as the classifier. When the number of fitting channels increases, the classification accuracy of the LDA classifier will be higher than the other three classifiers, so the LDA classifier should be more appropriate. The classification accuracy of the RF classifier in this type of problem has always been far lower than the other three classifiers, so it is not recommended to use the RF classifier as a classifier for gesture stacking related work.


Author(s):  
Rajni Bhalla ◽  
Jyoti

To construct a new text message classifier, this paper combines the K-nearest neighbor (KNN) classification approach with the support vector machine (SVM) training algorithm. The hybrid classification system is built by combining KNN and Support Vector Machine is abbreviated as K-VM. Due to its flexibility and reliability in handling different forms of classification activities, the KNN has been stated as one of the most frequently used classification approaches. The KNN faces a significant challenge in determining the acceptable value for parameter K to ensure good classification efficacy. This is because the value of parameter K has a significant effect on the KNN classifier's accuracy. The KNN is a method of learning that is based on laziness that holds the entire training examples before classification time, in addition to deciding the optimum value of parameter K. As a result, as the value of parameter K increases, the KNN's computational method becomes more intensive. This paper proposes the K-VM hybrid classification system to reduce the impact of parameters on classification accuracy. The Euclidean distance function is used to measure the average distance between the testing data point and each range in SVs in various categories. Experiments on a variety of benchmark datasets show that the K-VM approach outperforms the conventional KNN classification model in classification accuracy.


2021 ◽  
Vol 16 ◽  
pp. 121-132
Author(s):  
Ghada AL-Rawashdeh ◽  
Rabiei Bin Mamat ◽  
Jawad Hammad Rawashdeh

Email is one of the most economical and fast communication means in recent years; however, there has been a high increase in the rate of spam emails in recent times due to the increased number of email users. Emails are mainly classified into spam and non-spam categories using data mining classification techniques. This paper provides a description and comparative for the evaluation of effective classifiers using three algorithms - namely k-nearest neighbor, Naive Bayesian, and support vector machine. Seven spam email datasets were used to conducted experiment in the MATLAB environment without using any feature selection method. The simulation results showed SVM classifier to achieve a better classification accuracy compared to the K-NN and NB.


2021 ◽  
Vol 38 (1) ◽  
pp. 13-26
Author(s):  
Hesam Akbari ◽  
Muhammad Tariq Sadiq ◽  
Malih Payan ◽  
Somayeh Saraf Esmaili ◽  
Hourieh Baghri ◽  
...  

Late detection of depression is having detrimental consequences including suicide thus there is a serious need for an accurate computer-aided system for early diagnosis of depression. In this research, we suggested a novel strategy for the diagnosis of depression based on several geometric features derived from the Electroencephalography (EEG) signal shape of the second-order differential plot (SODP). First, various geometrical features of normal and depression EEG signals were derived from SODP including standard descriptors, a summation of the angles between consecutive vectors, a summation of distances to coordinate, a summation of the triangle area using three successive points, a summation of the shortest distance from each point relative to the 45-degree line, a summation of the centroids to centroid distance of successive triangles, central tendency measure and summation of successive vector lengths. Second, Binary Particle Swarm Optimization was utilized for the selection of suitable features. At last, the features were fed to support vector machine and k-nearest neighbor (KNN) classifiers for the identification of normal and depressed signals. The performance of the proposed framework was evaluated by the recorded bipolar EEG signals from 22 normal and 22 depressed subjects. The results provide an average classification accuracy of 98.79% with the KNN classifier using city-block distance in a ten-fold cross-validation strategy. The proposed system is accurate and can be used for the early diagnosis of depression. We showed that the proposed geometrical features are better than extracted features in the time, frequency, time-frequency domains as it helps in visual inspection and provide up to 17.56% improvement in classification accuracy in contrast to those features.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1248 ◽  
Author(s):  
Tao Zhang ◽  
Hong Wang ◽  
Jichi Chen ◽  
Enqiu He

Unfavorable driving states can cause a large number of vehicle crashes and are significant factors in leading to traffic accidents. Hence, the aim of this research is to design a robust system to detect unfavorable driving states based on sample entropy feature analysis and multiple classification algorithms. Multi-channel Electroencephalography (EEG) signals are recorded from 16 participants while performing two types of driving tasks. For the purpose of selecting optimal feature sets for classification, principal component analysis (PCA) is adopted for reducing dimensionality of feature sets. Multiple classification algorithms, namely, K nearest neighbor (KNN), decision tree (DT), support vector machine (SVM) and logistic regression (LR) are employed to improve the accuracy of unfavorable driving state detection. We use 10-fold cross-validation to assess the performance of the proposed systems. It is found that the proposed detection system, based on PCA features and the cubic SVM classification algorithm, shows robustness as it obtains the highest accuracy of 97.81%, sensitivity of 96.93%, specificity of 98.73% and precision of 98.75%. Experimental results show that the system we designed can effectively monitor unfavorable driving states.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1523
Author(s):  
Hana Charvátová ◽  
Aleš Procházka ◽  
Oldřich Vyšata

Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands ⟨ 3 , 8 ⟩ and ⟨ 8 , 15 ⟩ Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.


Author(s):  
Gulnaz Alimjan ◽  
Tieli Sun ◽  
Hurxida Jumahun ◽  
Yu Guan ◽  
Wanting Zhou ◽  
...  

Analysis and classification for remote sensing landscape based on remote sensing imagery is a popular research topic. In this paper, we propose a new remote sensing data classifier by incorporating the support vector machine (SVM) learning information into the K-nearest neighbor (KNN) classifier. The SVM is well known for its extraordinary generalization capability even with limited learning samples, and it is very useful for remote sensing applications as data samples are usually limited. The KNN has been widely used in data classification due to its simplicity and effectiveness. However, the KNN is instance-based and needs to keep all the training samples for classification, which could cause not only high computation complexity but also overfitting problems. Meanwhile, the performance of the KNN classifier is sensitive to the neighborhood size [Formula: see text] and how to select the value of the parameter [Formula: see text] relies heavily on practice and experience. Based on the observations that the SVM can contribute to the KNN on the problems of smaller training samples size as well as the selection of the parameter [Formula: see text], we propose a support vector nearest neighbor (abbreviated as SV-NN) hybrid classification approach which can simplify the parameter selection while maintaining classification accuracy. The proposed approach is consist of two stages. In the first stage, the SVM is performed on the training samples to obtain the reduced support vectors (SVs) for each of the sample categories. In the second stage, a nearest neighbor classifier (NNC) is used to classify a testing sample, i.e. the average Euclidean distance between the testing data point to each set of SVs from different categories is calculated and the NNC identifies the category with minimum distance. To evaluate the effectiveness of the proposed approach, firstly experiments of classification for samples from remote sensing data are evaluated, and then experiments of identifying different land covers regions in the remote sensing images are evaluated. Experimental results show that the SV-NN approach maintains good classification accuracy while reduces the training samples compared with the conventional SVM and KNN classification model.


Author(s):  
Zhuqing Li

Abstract This paper mainly analyzed the application of inertial sensors in basketball posture analysis. The data of 20 basketball players in different postures were collected by MEMS inertial sensors. The mean, variance, and skewness were taken as features to compare the performance of C4.5, random forest (RF), k-nearest neighbor (KNN), and support vector machine (SVM) algorithms in analyzing posture data. It was found that the classification accuracy of the KNN algorithm was around 90%, and the classification accuracy of C4.5, RF, and SVM algorithms was all above 90%. The classification accuracy of the RF algorithm was the highest (98.72%), which was significantly higher than C4.5 and SVM algorithms. The results verified the advantages of the RF algorithm in basketball posture analysis. The research results confirm the reliability of the inertial sensor in the field of motion posture analysis and make some contributions to its application in sport training. This paper provides support for the analysis of motion posture.


2014 ◽  
Vol 7 (11) ◽  
pp. 11771-11798 ◽  
Author(s):  
H.-Y. Cheng ◽  
C.-C. Yu

Abstract. This work performs cloud classification on all-sky images. To deal with mixed cloud types in one image, we propose to perform block division and block based classification. In addition to classical statistical texture features, the proposed method incorporates local binary pattern, which extracts local texture features in the feature vector. The combined feature can effectively preserve global information as well as more discriminating local texture features of different cloud types. The experimental results have shown that applying the combined feature results in higher classification accuracy compared to using classical statistical texture features. In our experiments, it is also validated that using block-based classification outperforms classification on the entire images. Moreover, we report the classification accuracy using different classifiers including k-nearest neighbor classifier, Bayesian classifier, and support vector machine in this paper.


Sign in / Sign up

Export Citation Format

Share Document