scholarly journals Depression Detection Based on Geometrical Features Extracted from SODP Shape of EEG Signals and Binary PSO

2021 ◽  
Vol 38 (1) ◽  
pp. 13-26
Author(s):  
Hesam Akbari ◽  
Muhammad Tariq Sadiq ◽  
Malih Payan ◽  
Somayeh Saraf Esmaili ◽  
Hourieh Baghri ◽  
...  

Late detection of depression is having detrimental consequences including suicide thus there is a serious need for an accurate computer-aided system for early diagnosis of depression. In this research, we suggested a novel strategy for the diagnosis of depression based on several geometric features derived from the Electroencephalography (EEG) signal shape of the second-order differential plot (SODP). First, various geometrical features of normal and depression EEG signals were derived from SODP including standard descriptors, a summation of the angles between consecutive vectors, a summation of distances to coordinate, a summation of the triangle area using three successive points, a summation of the shortest distance from each point relative to the 45-degree line, a summation of the centroids to centroid distance of successive triangles, central tendency measure and summation of successive vector lengths. Second, Binary Particle Swarm Optimization was utilized for the selection of suitable features. At last, the features were fed to support vector machine and k-nearest neighbor (KNN) classifiers for the identification of normal and depressed signals. The performance of the proposed framework was evaluated by the recorded bipolar EEG signals from 22 normal and 22 depressed subjects. The results provide an average classification accuracy of 98.79% with the KNN classifier using city-block distance in a ten-fold cross-validation strategy. The proposed system is accurate and can be used for the early diagnosis of depression. We showed that the proposed geometrical features are better than extracted features in the time, frequency, time-frequency domains as it helps in visual inspection and provide up to 17.56% improvement in classification accuracy in contrast to those features.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6365
Author(s):  
Jung Hwan Kim ◽  
Chul Min Kim ◽  
Man-Sung Yim

This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time–frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.


2012 ◽  
Vol 12 (05) ◽  
pp. 1240028 ◽  
Author(s):  
EE PING NG ◽  
TEIK-CHENG LIM ◽  
SUBHAGATA CHATTOPADHYAY ◽  
MURALIDHAR BAIRY

Epilepsy is a common neurological disorder characterized by recurrence seizures. Alcoholism causes organic changes in the brain, resulting in seizure attacks similar to epileptic fits. Hence, it is challenging to differentiate the cause of fits as epileptic or alcoholism, which is important for deciding on the treatment in the neurology ward. The focus of this paper is to automatically differentiate epileptic, normal, and alcoholic electroencephalogram (EEG) signals. As the EEG signals are non-linear and dynamic in nature, it is difficult to tell the subtle changes in these signals with the help of linear techniques or by the naked eye. Therefore, to analyze the normal (control), epileptic, and alcoholic EEG signals, two non-linear methods, such as recurrence plots (RPs) and then recurrence quantification analysis (RQA) are adopted. Approximately 10 RQA parameters have been used to classify the EEG signals into three distinct classes, i.e., normal, epileptic, and alcoholic. Six classifiers, such as support vector machine (SVM), radial basis probabilistic neural network (RBPNN), decision tree (DT), Gaussian mixture model (GMM), k-nearest neighbor (kNN), and fuzzy Sugeno classifiers have been developed to accomplish this task. Results show that the GMM classifier outperformed the other classifiers with a classification sensitivity of 99.6%, specificity of 98.3%, and accuracy of 98.6%.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jingwen Feng ◽  
Bo Hu ◽  
Jingting Sun ◽  
Junpeng Zhang ◽  
Wen Wang ◽  
...  

Background: The use of social media daily could nurture a fragmented reading habit. However, little is known whether fragmented reading (FR) affects cognition and what are the underlying electroencephalogram (EEG) alterations it may lead to.Purpose: This study aimed to identify whether individuals have FR habits based on the single-trial EEG spectral features using machine learning (ML), as well as to find out the potential cognitive impairment induced by FR.Methods: Subjects were recruited through a questionnaire and divided into FR and noFR groups according to the time they spent on FR per day. Moreover, 64-channel EEG was acquired in Continuous Performance Task (CPT) and segmented into 0.5–1.5 s post-stimulus epochs under cue and background conditions. The sample sizes were as follows: FR in cue condition, 692 trials; noFR in cue condition, 688 trials; FR in background condition, 561 trials; noFR in background condition, 585 trials. For these single-trials, the relative power (RP) of six frequency bands [delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta1 (14–20 Hz), beta2 (21–29 Hz), lower gamma (30–40 Hz)] were extracted as features. After feature selection, the most important feature sets were fed into three ML models, namely Support-Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes to perform the identification of FR. RP of six frequency bands was also used as feature sets to conduct classification tasks.Results: The classification accuracy reached up to 96.52% in the SVM model under cue conditions. Specifically, among six frequency bands, the most important features were found in alpha and gamma bands. Gamma achieved the highest classification accuracy (86.69% for cue, 86.45% for background). In both conditions, alpha RP in central sites of FR was stronger than noFR (p < 0.001). Gamma RP in the frontal site of FR was weaker than noFR in the background condition (p < 0.001), while alpha RP in parieto-occipital sites of FR was stronger than noFR in the cue condition (p < 0.001).Conclusion: Fragmented reading can be identified based on single-trial EEG evoked by CPT using ML, and the RP of alpha and gamma may reflect the impairment on attention and working memory by FR. FR might lead to cognitive impairment and is worth further exploration.


Author(s):  
Saneesh Cleatus T ◽  
Dr. Thungamani M

In this paper we study the effect of nonlinear preprocessing techniques in the classification of electroencephalogram (EEG) signals. These methods are used for classifying the EEG signals captured from epileptic seizure activity and brain tumor category. For the first category, preprocessing is carried out using elliptical filters, and statistical features such as Shannon entropy, mean, standard deviation, skewness and band power. K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) were used for the classification. For the brain tumor EEG signals, empirical mode decomposition is used as a pre-processing technique along with standard statistical features for the classification of normal and abnormal EEG signals. For epileptic signals we have achieved an average accuracy of 94% for a three-class classification and for brain tumor signals we have achieved a classification accuracy of 98% considering it as a two class problem.


Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Amin Alqudah

Abstract Since December 2019, the appearance of an outbreak of a novel coronavirus disease namely COVID-19 and which is previously known as 2019-nCoV. COVID-19 is a type of coronavirus that leads to the general destruction of respiratory systems and a severe respiratory symptom which are associated with highly Intensive Care Unit (ICU) admissions and death. Like any disease, the early diagnosis of coronavirus leads to limit its wide-spreading and increases the recovery rates of patients. The gold standard of COVID-19 detection is the real-time reverse transcription-polymerase chain reaction (RT-PCR) which has been used by the clinician to discover the presence or absence of this type of virus. The clinicians report that this technique has a low positive rate in the early stage of this disease. Based on this, the clinicians were forced to use another way to help in the early diagnosis of COVID-2019. So, the clinician's attention moved towards the medical imaging modalities especially the computed Tomography (CT) and X-ray chest images. Both modalities show that there is a change in the lungs in the case of COVID-19 that is different from any other type of pneumonic disease. Therefore, this research targeted toward employing different Artificial Intelligence (AI) techniques to propose a system for early detection of COVID-19 using chest X-ray images. These images are classified using different AI algorithms and a combination of them, then their performance was evaluated to recognize the best of them. These algorithms include a convolutional neural network (CNN), Softmax, support vector machine (SVM), Random Forest, and K nearest neighbor (KNN). Here CNN is into two scenarios, the first one to classify the X-ray images using a softmax classifier, and the second one to extract automated features from the images and pass these features to other classifiers (SVM, RFF, and KNN). According to the results, the performance of all classifiers is good and most of them record accuracy, sensitivity, specificity, and precision of more than 98%.


2020 ◽  
pp. 1577-1597
Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


2013 ◽  
Vol 23 (03) ◽  
pp. 1350009 ◽  
Author(s):  
U. RAJENDRA ACHARYA ◽  
RATNA YANTI ◽  
JIA WEI ZHENG ◽  
M MUTHU RAMA KRISHNAN ◽  
JEN HONG TAN ◽  
...  

Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.


Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3650
Author(s):  
Heejin Kim ◽  
Ki Hong Kim ◽  
Ki Jeong Hong ◽  
Yunseo Ku ◽  
Sang Do Shin ◽  
...  

The recovery of cerebral circulation during cardiopulmonary resuscitation (CPR) is important to improve the neurologic outcomes of cardiac arrest patients. To evaluate the feasibility of an electroencephalogram (EEG)-based prediction model as a CPR feedback indicator of high- or low-CBF carotid blood flow (CBF), the frontal EEG and hemodynamic data including CBF were measured during animal experiments with a ventricular fibrillation (VF) swine model. The most significant 10 EEG parameters in the time, frequency and entropy domains were determined by neighborhood component analysis and Student’s t-test for discriminating high- or low-CBF recovery with a division criterion of 30%. As a binary CBF classifier, the performances of logistic regression, support vector machine (SVM), k-nearest neighbor, random forest and multilayer perceptron algorithms were compared with eight-fold cross-validation. The three-order polynomial kernel-based SVM model showed the best accuracy of 0.853. The sensitivity, specificity, F1 score and area under the curve of the SVM model were 0.807, 0.906, 0.853 and 0.909, respectively. An automated CBF classifier derived from non-invasive EEG is feasible as a potential indicator of the CBF recovery during CPR in a VF swine model.


2015 ◽  
Vol 8 (3) ◽  
pp. 1173-1182 ◽  
Author(s):  
H.-Y. Cheng ◽  
C.-C. Yu

Abstract. This work performs cloud classification on all-sky images. To deal with mixed cloud types in one image, we propose performing block division and block-based classification. In addition to classical statistical texture features, the proposed method incorporates local binary pattern, which extracts local texture features in the feature vector. The combined feature can effectively preserve global information as well as more discriminating local texture features of different cloud types. The experimental results have shown that applying the combined feature results in higher classification accuracy compared to using classical statistical texture features. In our experiments, it is also validated that using block-based classification outperforms classification on the entire images. Moreover, we report the classification accuracy using different classifiers including the k-nearest neighbor classifier, Bayesian classifier, and support vector machine.


Sign in / Sign up

Export Citation Format

Share Document