scholarly journals Deep Brain Stimulation of the Forel’s Field for Dystonia: Preliminary Results

2021 ◽  
Vol 15 ◽  
Author(s):  
Shiro Horisawa ◽  
Kotaro Kohara ◽  
Masato Murakami ◽  
Atsushi Fukui ◽  
Takakazu Kawamata ◽  
...  

The field of Forel (FF) is a subthalamic area through which the pallidothalamic tracts originating from the globus pallidus internus (GPi) traverse. The FF was used as a stereotactic surgical target (ablation and stimulation) to treat cervical dystonia in the 1960s and 1970s. Although recent studies have reappraised the ablation and stimulation of the pallidothalamic tract at FF for Parkinson’s disease, the efficacy of deep brain stimulation of FF (FF-DBS) for dystonia has not been well investigated. To confirm the efficacy and stimulation-induced adverse effects of FF-DBS, three consecutive patients with medically refractory dystonia who underwent FF-DBS were analyzed (tongue protrusion dystonia, cranio-cervico-axial dystonia, and hemidystonia). Compared to the Burke-Fahn-Marsden Dystonia Rating Scale-Movement Scale scores before surgery (23.3 ± 12.7), improvements were observed at 1 week (8.3 ± 5.9), 3 months (5.3 ± 5.9), and 6 months (4.7 ± 4.7, p = 0.0282) after surgery. Two patients had stimulation-induced complications, including bradykinesia and postural instability, all well controlled by stimulation adjustments.

CNS Spectrums ◽  
2016 ◽  
Vol 21 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Isabel Hindle Fisher ◽  
Hardev S. Pall ◽  
Rosalind D. Mitchell ◽  
Jamilla Kausar ◽  
Andrea E. Cavanna

ObjectiveApathy has been reported as a possible adverse effect of deep brain stimulation of the subthalamic nucleus (STN-DBS). We investigated the prevalence and severity of apathy in 22 patients with Parkinson’s disease (PD) who underwent STN-DBS, as well as the effects of apathy on quality of life (QOL).MethodsAll patients were assessed with the Lille Apathy Rating Scale (LARS), the Apathy Scale (AS), and the Parkinson’s Disease Questionnaire and were compared to a control group of 38 patients on pharmacotherapy alone.ResultsThere were no significant differences in the prevalence or severity of apathy between patients who had undergone STN-DBS and those on pharmacotherapy alone. Significant correlations were observed between poorer QOL and degree of apathy, as measured by the LARS (p<0.001) and the AS (p=0.021). PD-related disability also correlated with both apathy ratings (p<0.001 and p=0.017, respectively).ConclusionOur findings suggest that STN-DBS is not necessarily associated with apathy in the PD population; however, more severe apathy appears to be associated with a higher level of disability due to PD and worse QOL, but no other clinico-demographic characteristics.


2004 ◽  
Vol 101 (4) ◽  
pp. 682-686 ◽  
Author(s):  
Bruno Aouizerate ◽  
Emmanuel Cuny ◽  
Corinne Martin-Guehl ◽  
Dominique Guehl ◽  
Helene Amieva ◽  
...  

✓ Obsessive—compulsive disorder (OCD) is an anxiety disorder associated with recurrent intrusive thoughts and repetitive behaviors. Although conventional pharmacological and/or psychological treatments are well established and effective in treating OCD, symptoms remain unchanged in up to 30% of patients. Deep brain stimulation (DBS) of the anterior limb of the internal capsule has recently been proposed as a possible therapeutic alternative in treatment-resistant OCD. In the present study, the authors tested the hypothesis that DBS of the ventral caudate nucleus might be effective in a patient with intractable severe OCD and concomitant major depression. Psychiatric assessment included the Yale—Brown Obsessive Compulsive Scale (Y-BOCS), the Hamilton Depression Rating Scale (HDRS), the Hamilton Anxiety Rating Scale (HARS), and the Global Assessment of Functioning (GAF) Scale for determining the symptom severity of OCD, depression, and anxiety as well as the quality of pychosocial and occupational functioning, respectively. Neuropsychological assessment consisted of a wide range of tests primarily exploring memory and executive functions. Deep brain stimulation of the ventral caudate nucleus markedly improved symptoms of depression and anxiety until their remission, which was achieved at 6 months after the start of stimulation (HDRS ≤ 7 and HARS ≤ 10). Remission of OCD (Y-BOCS < 16) was also delayed after 12 or 15 months of DBS. The level of functioning pursuant to the GAF scale progressively increased during the 15-month follow-up period. No neuropsychological deterioration was observed, indicating that DBS of the ventral caudate nucleus could be a promising strategy in the treatment of refractory cases of both OCD and major depression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Myung Ji Kim ◽  
Kyung Won Chang ◽  
So Hee Park ◽  
Won Seok Chang ◽  
Hyun Ho Jung ◽  
...  

Deep brain stimulation (DBS) targeting the ventralis intermedius (VIM) nucleus of the thalamus and the posterior subthalamic area (PSA) has been shown to be an effective treatment for essential tremor (ET). The aim of this study was to compare the stimulation-induced side effects of DBS targeting the VIM and PSA using a single electrode. Patients with medication-refractory ET who underwent DBS electrode implantation between July 2011 and October 2020 using a surgical technique that simultaneously targets the VIM and PSA with a single electrode were enrolled in this study. A total of 93 patients with ET who had 115 implanted DBS electrodes (71 unilateral and 22 bilateral) were enrolled. The Clinical Rating Scale for Tremor (CRST) subscores improved from 20.0 preoperatively to 4.3 (78.5% reduction) at 6 months, 6.3 (68.5% reduction) at 1 year, and 6.5 (67.5% reduction) at 2 years postoperation. The best clinical effect was achieved in the PSA at significantly lower stimulation amplitudes. Gait disturbance and clumsiness in the leg was found in 13 patients (14.0%) upon stimulation of the PSA and in significantly few patients upon stimulation of the VIM (p = 0.0002). Fourteen patients (15.1%) experienced dysarthria when the VIM was stimulated; this number was significantly more than that with PSA stimulation (p = 0.0233). Transient paresthesia occurred in 13 patients (14.0%) after PSA stimulation and in six patients (6.5%) after VIM stimulation. Gait disturbance and dysarthria were significantly more prevalent in patients undergoing bilateral DBS than in those undergoing unilateral DBS (p = 0.00112 and p = 0.0011, respectively). Paresthesia resolved either after reducing the amplitude or switching to bipolar stimulation. However, to control gait disturbance and dysarthria, some loss of optimal tremor control was necessary at that particular electrode contact. In the present study, the most common stimulation-induced side effect associated with VIM DBS was dysarthria, while that associated with PSA DBS was gait disturbance. Significantly, more side effects were associated with bilateral DBS than with unilateral DBS. Therefore, changing active DBS contacts to simultaneous targeting of the VIM and PSA may be especially helpful for ameliorating stimulation-induced side effects.


2018 ◽  
Vol 15 (1) ◽  
pp. 40-42
Author(s):  
Resha Shrestha ◽  
Pranaya Shrestha ◽  
Pravesh Rajbhandari ◽  
Samir Acharya ◽  
Basant Pant

We present a case of 57 years old patient with Idiopathic Parkinsons disease(PD) who had right sided Globus PallidusInternus (GPi) lesioning or pallidotomy as surgical treatment modality of PD. However this patient went into Parkinsons crisis postoperatively which is a rare form of complication. We had to admit in critical care for two weeks before he gradually improved and reached to preoperative state. This patient finally underwent deep brain stimulation(DBS) of bilateral Subthalamic nucleus (STN) and he has improved in terms of Unified Parkinson’s Disease Rating Scale(UPDRS) score.Nepal Journal of Neuroscience 15:40-42, 2018


2020 ◽  
Vol 98 (6) ◽  
pp. 399-403
Author(s):  
Hideo Mure ◽  
Naoto Toyoda ◽  
Ryoma Morigaki ◽  
Koji Fujita ◽  
Yasushi Takagi

<b><i>Background:</i></b> The Lance-Adams syndrome (LAS) is a myoclonus syndrome caused by hypoxic-ischemic encephalopathy. LAS cases could be refractory to first-line medications, and the neuronal mechanism underlying LAS pathology remains unknown. <b><i>Objectives:</i></b> To describe a patient with LAS who underwent bilateral globus pallidus internus (GPi) stimulation and discuss the pathophysiology of LAS with intraoperative electrophysiological findings. <b><i>Patients:</i></b> A 79-year-old woman presented with a history of cardiopulmonary arrest due to internal carotid artery rupture following carotid endarterectomy after successful cardiopulmonary resuscitation. However, within 1 month, the patient developed sensory stimulation-induced myoclonus in her face and extremities. Because her myoclonic symptoms were refractory to pharmacotherapy, deep brain stimulation of the GPi was performed 1 year after the hypoxic attack. <b><i>Results:</i></b> Continuous bilateral GPi stimulation with optimal parameter settings remarkably improved the patient’s myoclonic symptoms. At the 2-year follow-up, her Unified Myoclonus Rating Scale score decreased from 90 to 24. In addition, we observed burst firing and interburst pause patterns on intraoperative microelectrode recordings of the bilateral GPi and stimulated this area as the therapeutic target. <b><i>Conclusion:</i></b> Our results show that impairment in the basal ganglion circuitry might be involved in the pathogenesis of myoclonus in patients with LAS.


2018 ◽  
Vol 129 (2) ◽  
pp. 308-314 ◽  
Author(s):  
Rene Molina ◽  
Michael S. Okun ◽  
Jonathan B. Shute ◽  
Enrico Opri ◽  
P. Justin Rossi ◽  
...  

Deep brain stimulation (DBS) has emerged as a promising intervention for the treatment of select movement and neuropsychiatric disorders. Current DBS therapies deliver electrical stimulation continuously and are not designed to adapt to a patient’s symptoms. Continuous DBS can lead to rapid battery depletion, which necessitates frequent surgery for battery replacement. Next-generation neurostimulation devices can monitor neural signals from implanted DBS leads, where stimulation can be delivered responsively, moving the field of neuromodulation away from continuous paradigms. To this end, the authors designed and chronically implemented a responsive stimulation paradigm in a patient with medically refractory Tourette syndrome. The patient underwent implantation of a responsive neurostimulator, which is capable of responsive DBS, with bilateral leads in the centromedian-parafascicular (Cm-Pf) region of the thalamus. A spectral feature in the 5- to 15-Hz band was identified as the control signal. Clinical data collected prior to and after 12 months of responsive therapy revealed improvements from baseline scores in both Modified Rush Tic Rating Scale and Yale Global Tic Severity Scale scores (64% and 48% improvement, respectively). The effectiveness of responsive stimulation (p = 0.16) was statistically identical to that of scheduled duty cycle stimulation (p = 0.33; 2-sided Wilcoxon unpaired rank-sum t-test). Overall, responsive stimulation resulted in a 63.3% improvement in the neurostimulator’s projected mean battery life. Herein, to their knowledge, the authors present the first proof of concept for responsive stimulation in a patient with Tourette syndrome.


2021 ◽  
pp. 1-7
Author(s):  
Adel Azghadi ◽  
Megan M. Rajagopal ◽  
Kelsey A. Atkinson ◽  
Kathryn L. Holloway

OBJECTIVE Randomized controlled trials have demonstrated that deep brain stimulation (DBS) of both the globus pallidus internus (GPI) and subthalamic nucleus (STN) for Parkinson’s disease (PD) is superior to the best medical therapy. Tremor is particularly responsive to DBS, with reports of 70%–80% improvement. However, a small number of patients do not obtain the expected response with both STN and GPI targets. Indeed, the authors’ patient population had a similar 81.2% tremor reduction with a 9.6% failure rate. In an analysis of these failures, they identified patients with preoperative on-medication tremor who subsequently received a GPI lead as a subpopulation at higher risk for inadequate tremor control. Thereafter, STN DBS was recommended for patients with on-medication tremor. However, for the patients with symptoms and comorbidities that favored GPI as the target, dual GPI and ventral intermediate nucleus of the thalamus (VIM) leads were proposed. This report details outcomes for those patients. METHODS This is a retrospective review of patients with PD who met the criteria for and underwent simultaneous GPI+VIM DBS surgery from 2015 to 2020 and had available follow-up data. The preoperative Unified Parkinson’s Disease Rating Scale scores were obtained with the study participants on and off their medication. Postoperatively, the GPI lead was kept on at baseline and scores were obtained with and without VIM stimulation. RESULTS Thirteen PD patients with significant residual preoperative tremor on medication underwent simultaneous GPI+VIM DBS surgery (11 unilateral, 2 bilateral). A mean 90.6% (SD 15.0%) reduction in tremor scores was achieved with dual GPI+VIM stimulation compared to a 21.8% (SD 71.9%) reduction with GPI stimulation alone and a 30.9% (SD 37.8%) reduction with medication. Although rigidity and bradykinesia reductions were accomplished with just GPI stimulation, 13 of the 15 hemispheres required VIM stimulation to achieve excellent tremor control. CONCLUSIONS GPI+VIM stimulation was required to adequately control tremor in all but 2 patients in this series, substantiating the authors’ hypothesis that, in their population, medication-resistant tremor does not completely respond to GPI stimulation. Dual stimulation of the GPI and VIM proved to be an effective option for the patients who had symptoms and comorbidities that favored GPI as a target and had medication-resistant tremor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiping Li ◽  
Shanshan Mei ◽  
Xiaofei Jia ◽  
Yuqing Zhang

Objective: This study aimed to evaluate the direct anti-dyskinesia effect of deep brain stimulation (DBS) of subthalamic nucleus (STN) on levodopa-induced on-dyskinesia in Parkinson's disease (PD) patients during the early period after surgery without reducing the levodopa dosage.Methods: We retrospectively reviewed PD patients who underwent STN-DBS from January 2017 to October 2019 and enrolled patients with levodopa-induced on-dyskinesia before surgery and without a history of thalamotomy or pallidotomy. The Unified Dyskinesia Rating Scale (UDysRS) parts I+III+IV and the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) were monitored prior to surgery, and at the 3-month follow-up, the location of active contacts was calculated by postoperative CT–MRI image fusion to identify stimulation sites with good anti-dyskinesia effect.Results: There were 41 patients enrolled. The postoperative levodopa equivalent daily dose (LEDD) (823.1 ± 201.5 mg/day) was not significantly changed from baseline (844.6 ± 266.1 mg/day, P = 0.348), while the UDysRS on-dyskinesia subscores significantly decreased from 24 (10–58) to 0 (0–18) [median (range)] after STN stimulation (P &lt; 0.0001). The levodopa-induced on-dyskinesia recurred in stimulation-off/medication-on state in all the 41 patients and disappeared in 39 patients when DBS stimulation was switched on at 3 months of follow-up. The active contacts which correspond to good effect for dyskinesia were located above the STN, and the mean coordinate was 13.05 ± 1.24 mm lateral, −0.13 ± 1.16 mm posterior, and 0.72 ± 0.78 mm superior to the midcommissural point.Conclusions: High-frequency electrical stimulation of the area above the STN can directly suppress levodopa-induced on-dyskinesia.


2013 ◽  
Vol 119 (6) ◽  
pp. 1537-1545 ◽  
Author(s):  
Lisbeth Schjerling ◽  
Lena E. Hjermind ◽  
Bo Jespersen ◽  
Flemming F. Madsen ◽  
Jannick Brennum ◽  
...  

Object The authors' aim was to compare the subthalamic nucleus (STN) with the globus pallidus internus (GPi) as a stimulation target for deep brain stimulation (DBS) for medically refractory dystonia. Methods In a prospective double-blind crossover study, electrodes were bilaterally implanted in the STN and GPi of 12 patients with focal, multifocal, or generalized dystonia. Each patient was randomly selected to undergo initial bilateral stimulation of either the STN or the GPi for 6 months, followed by bilateral stimulation of the other nucleus for another 6 months. Preoperative and postoperative ratings were assessed by using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and video recordings. Quality of life was evaluated by using questionnaires (36-item Short Form Health Survey). Supplemental Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores were assessed for patients with focal dystonia (torticollis) by examining the video recordings. Results On average for all patients, DBS improved the BFMDRS movement scores (p < 0.05) and quality of life physical scores (p < 0.01). After stimulation of the STN, the mean 6-month improvement in BFMDRS movement score was 13.8 points; after stimulation of the GPi, this improvement was 9.1 points (p = 0.08). Quality of life did not differ significantly regardless of which nucleus was stimulated. All 12 patients accepted 6 months of stimulation of the STN, but only 7 accepted 6 months of stimulation of the GPi. Among those who rejected stimulation of the GPi, 3 accepted concomitant stimulation of both the STN and GPi for 6 months, resulting in improved quality of life physical and mental scores and BFMDRS movement scores. Among the 4 patients who were rated according to TWSTRS, after 6 months of stimulation of both the STN and GPi, TWSTRS scores improved by 4.7% after stimulation of the GPi and 50.8% after stimulation of the STN (p = 0.08). Conclusions The STN seems to be a well-accepted, safe, and promising stimulation target in the treatment of dystonia, but further studies are necessary before the optimal target can be concluded. Simultaneous stimulation of the STN and GPi should be further investigated. Clinical trial registration no.: KF 01-110/01 (Committees on Biomedical Research Ethics of the Capital Region of Denmark).


Sign in / Sign up

Export Citation Format

Share Document