scholarly journals Evaluation of Task fMRI Decoding With Deep Learning on a Small Sample Dataset

2021 ◽  
Vol 15 ◽  
Author(s):  
Sunao Yotsutsuji ◽  
Miaomei Lei ◽  
Hiroyuki Akama

Recently, several deep learning methods have been applied to decoding in task-related fMRI, and their advantages have been exploited in a variety of ways. However, this paradigm is sometimes problematic, due to the difficulty of applying deep learning to high-dimensional data and small sample size conditions. The difficulties in gathering a large amount of data to develop predictive machine learning models with multiple layers from fMRI experiments with complicated designs and tasks are well-recognized. Group-level, multi-voxel pattern analysis with small sample sizes results in low statistical power and large accuracy evaluation errors; failure in such instances is ascribed to the individual variability that risks information leakage, a particular issue when dealing with a limited number of subjects. In this study, using a small-size fMRI dataset evaluating bilingual language switch in a property generation task, we evaluated the relative fit of different deep learning models, incorporating moderate split methods to control the amount of information leakage. Our results indicated that using the session shuffle split as the data folding method, along with the multichannel 2D convolutional neural network (M2DCNN) classifier, recorded the best authentic classification accuracy, which outperformed the efficiency of 3D convolutional neural network (3DCNN). In this manuscript, we discuss the tolerability of within-subject or within-session information leakage, of which the impact is generally considered small but complex and essentially unknown; this requires clarification in future studies.

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


PEDIATRICS ◽  
1993 ◽  
Vol 92 (2) ◽  
pp. 300-301
Author(s):  
DOREN FREDRICKSON

To the Editor.— I wish to comment on the study reported by Cronenwett et al,1 which was a fascinating prospective study among married white women who planned to breast-feed. Women were randomly selected to perform either exdusive breast-feeding or partial breast-feeding with bottled human milk supplements to determine the impact of infant temperament and limited bottle-feeding on breast-feeding duration. The authors admit that small sample size and lack of statistical power make a false-negative possible.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2019 ◽  
Vol 9 (13) ◽  
pp. 2758 ◽  
Author(s):  
Mujtaba Husnain ◽  
Malik Muhammad Saad Missen ◽  
Shahzad Mumtaz ◽  
Muhammad Zeeshan Jhanidr ◽  
Mickaël Coustaty ◽  
...  

In the area of pattern recognition and pattern matching, the methods based on deep learning models have recently attracted several researchers by achieving magnificent performance. In this paper, we propose the use of the convolutional neural network to recognize the multifont offline Urdu handwritten characters in an unconstrained environment. We also propose a novel dataset of Urdu handwritten characters since there is no publicly-available dataset of this kind. A series of experiments are performed on our proposed dataset. The accuracy achieved for character recognition is among the best while comparing with the ones reported in the literature for the same task.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2085 ◽  
Author(s):  
Rami M. Jomaa ◽  
Hassan Mathkour ◽  
Yakoub Bazi ◽  
Md Saiful Islam

Although fingerprint-based systems are the commonly used biometric systems, they suffer from a critical vulnerability to a presentation attack (PA). Therefore, several approaches based on a fingerprint biometrics have been developed to increase the robustness against a PA. We propose an alternative approach based on the combination of fingerprint and electrocardiogram (ECG) signals. An ECG signal has advantageous characteristics that prevent the replication. Combining a fingerprint with an ECG signal is a potentially interesting solution to reduce the impact of PAs in biometric systems. We also propose a novel end-to-end deep learning-based fusion neural architecture between a fingerprint and an ECG signal to improve PA detection in fingerprint biometrics. Our model uses state-of-the-art EfficientNets for generating a fingerprint feature representation. For the ECG, we investigate three different architectures based on fully-connected layers (FC), a 1D-convolutional neural network (1D-CNN), and a 2D-convolutional neural network (2D-CNN). The 2D-CNN converts the ECG signals into an image and uses inverted Mobilenet-v2 layers for feature generation. We evaluated the method on a multimodal dataset, that is, a customized fusion of the LivDet 2015 fingerprint dataset and ECG data from real subjects. Experimental results reveal that this architecture yields a better average classification accuracy compared to a single fingerprint modality.


2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


2021 ◽  
Vol 11 (15) ◽  
pp. 7147
Author(s):  
Jinmo Gu ◽  
Jinhyuk Na ◽  
Jeongeun Park ◽  
Hayoung Kim

Outbound telemarketing is an efficient direct marketing method wherein telemarketers solicit potential customers by phone to purchase or subscribe to products or services. However, those who are not interested in the information or offers provided by outbound telemarketing generally experience such interactions negatively because they perceive telemarketing as spam. In this study, therefore, we investigate the use of deep learning models to predict the success of outbound telemarketing for insurance policy loans. We propose an explainable multiple-filter convolutional neural network model called XmCNN that can alleviate overfitting and extract various high-level features using hundreds of input variables. To enable the practical application of the proposed method, we also examine ensemble models to further improve its performance. We experimentally demonstrate that the proposed XmCNN significantly outperformed conventional deep neural network models and machine learning models. Furthermore, a deep learning ensemble model constructed using the XmCNN architecture achieved the lowest false positive rate (4.92%) and the highest F1-score (87.47%). We identified important variables influencing insurance policy loan prediction through the proposed model, suggesting that these factors should be considered in practice. The proposed method may increase the efficiency of outbound telemarketing and reduce the spam problems caused by calling non-potential customers.


2021 ◽  
Vol 290 ◽  
pp. 02020
Author(s):  
Boyu Zhang ◽  
Xiao Wang ◽  
Shudong Li ◽  
Jinghua Yang

Current underwater shipwreck side scan sonar samples are few and difficult to label. With small sample sizes, their image recognition accuracy with a convolutional neural network model is low. In this study, we proposed an image recognition method for shipwreck side scan sonar that combines transfer learning with deep learning. In the non-transfer learning, shipwreck sonar sample data were used to train the network, and the results were saved as the control group. The weakly correlated data were applied to train the network, then the network parameters were transferred to the new network, and then the shipwreck sonar data was used for training. These steps were repeated using strongly correlated data. Experiments were carried out on Lenet-5, AlexNet, GoogLeNet, ResNet and VGG networks. Without transfer learning, the highest accuracy was obtained on the ResNet network (86.27%). Using weakly correlated data for transfer training, the highest accuracy was on the VGG network (92.16%). Using strongly correlated data for transfer training, the highest accuracy was also on the VGG network (98.04%). In all network architectures, transfer learning improved the correct recognition rate of convolutional neural network models. Experiments show that transfer learning combined with deep learning improves the accuracy and generalization of the convolutional neural network in the case of small sample sizes.


2015 ◽  
Vol 2015 (3) ◽  
pp. 117-126
Author(s):  
Дмитрий Будыльский ◽  
Dmitriy Budylskiy ◽  
Александр Подвесовский ◽  
Aleksandr Podvesovskiy

This paper describes actual problem of sentiment based aspect analysis and four deep learning models: convolutional neural network, recurrent neural network, GRU and LSTM networks. We evaluated these models on Russian text dataset from SentiRuEval-2015. Results show good efficiency and high potential for further natural language processing applications.


Sign in / Sign up

Export Citation Format

Share Document