scholarly journals Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in Non-human Primates

2017 ◽  
Vol 11 ◽  
Author(s):  
Tyler Libey ◽  
Eberhard E. Fetz
2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Evmorfia P. Bataka ◽  
Georgios Miliokas ◽  
Nikolaos Katsoulas ◽  
Christos T. Nakas

Open-source devices are widespread and have been available to everyone over the past decade. The low cost of such devices boosts the creation of instruments for various applications such as smart farming, environmental monitoring, animal behavior monitoring, human health monitoring, etc. This research aims to use statistical methods to assess agreement and similarity in order to compare an open-source weather station that was constructed and programmed from scratch with an industrial weather station. The experiment took place in the experimental Greenhouses of the University of Thessaly, Velestino, Greece, for 7 consecutive days. The topology of the experiment consisted of 30 open-source weather stations and three industrials, creating three clusters with a ratio of 10 open-source to 1 industrial. The results revealed low to high agreement across the measurement range, with high variability, possibly due to factors that were not considered in the statistical model.


2018 ◽  
Author(s):  
Alexander D. Jacob ◽  
Adam I. Ramsaran ◽  
Andrew J. Mocle ◽  
Lina M. Tran ◽  
Chen Yan ◽  
...  

AbstractMiniaturized fluorescence microscopes for imaging calcium transients are a promising tool for investigating the relationship between behaviour and population-level neuronal activity in rodents. However, commercially available miniature microscopes may be costly, and, because they are closed-source, may not be easily modified based on particular experimental requirements. Here, we describe how to build and use a low-cost compact head-mounted endoscope (CHEndoscope) system for in vivo calcium imaging. The CHEndoscope uses an implanted gradient index (GRIN) lens along with the genetically encoded calcium indicator GCaMP6 to image calcium transients from hundreds of neurons simultaneously in awake behaving mice. This system is affordable, open-source, and flexible, permitting modification depending on the particular experiment. This Unit describes in detail the assembly, surgical implantation, data collection, and processing of calcium signals using the CHEndoscope system. The aim of this open framework model is to provide an accessible set of miniaturized calcium imaging tools for the neuroscience research community.Significance StatementThe ability to image calcium transients in awake, behaving rodents using miniature microscopes opens exciting and novel avenues for gaining insights into how information is encoded in neural circuits. The development of this tool has already had a significant impact on neuroscience research. The cost of commercial systems, however, may be prohibitive for many laboratories. Here, we describe an affordable, open-source compact head-mounted endoscope (CHEndoscope) system for performing in vivo calcium imaging in freely-behaving mice. CHEndoscopes may be manufactured by individual laboratories at relatively minor cost. Our hope is that greater availability of affordable, open-source tools (such as the one presented here) will accelerate the pace of discoveries in systems neuroscience.


2020 ◽  
Vol 52 ◽  
pp. 55-61
Author(s):  
Ettore Potente ◽  
Cosimo Cagnazzo ◽  
Alessandro Deodati ◽  
Giuseppe Mastronuzzi

2020 ◽  
Author(s):  
Andrew Fang ◽  
Jonathan Kia-Sheng Phua ◽  
Terrence Chiew ◽  
Daniel De-Liang Loh ◽  
Lincoln Ming Han Liow ◽  
...  

BACKGROUND During the Coronavirus Disease 2019 (COVID-19) outbreak, community care facilities (CCF) were set up as temporary out-of-hospital isolation facilities to contain the surge of cases in Singapore. Confined living spaces within CCFs posed an increased risk of communicable disease spread among residents. OBJECTIVE This inspired our healthcare team managing a CCF operation to design a low-cost communicable disease outbreak surveillance system (CDOSS). METHODS Our CDOSS was designed with the following considerations: (1) comprehensiveness, (2) efficiency through passive reconnoitering from electronic medical record (EMR) data, (3) ability to provide spatiotemporal insights, (4) low-cost and (5) ease of use. We used Python to develop a lightweight application – Python-based Communicable Disease Outbreak Surveillance System (PyDOSS) – that was able perform syndromic surveillance and fever monitoring. With minimal user actions, its data pipeline would generate daily control charts and geospatial heat maps of cases from raw EMR data and logged vital signs. PyDOSS was successfully implemented as part of our CCF workflow. We also simulated a gastroenteritis (GE) outbreak to test the effectiveness of the system. RESULTS PyDOSS was used throughout the entire duration of operation; the output was reviewed daily by senior management. No disease outbreaks were identified during our medical operation. In the simulated GE outbreak, PyDOSS was able to effectively detect an outbreak within 24 hours and provided information about cluster progression which could aid in contact tracing. The code for a stock version of PyDOSS has been made publicly available. CONCLUSIONS PyDOSS is an effective surveillance system which was successfully implemented in a real-life medical operation. With the system developed using open-source technology and the code made freely available, it significantly reduces the cost of developing and operating CDOSS and may be useful for similar temporary medical operations, or in resource-limited settings.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2011 ◽  
Vol 08 (04) ◽  
pp. 557-575 ◽  
Author(s):  
CHRISTINA RAASCH

Open source (OS) has raised significant attention in industrial practice and in scholarly research as a new and successful mode of product development. This paper is among the first to study open source development processes outside their original context, the software industry. In particular, we investigate the development of tangible products in so-called open design projects. We study how open design projects address the challenges usually put forward in the literature as barriers to the open development of tangible products. The analysis rests on the comparative qualitative investigation of four cases from different industries. We find that, subject to certain contingencies, open design processes can be organized to resemble OSS development processes to a considerable degree. Some practices are established specifically to uphold OS principles in the open design context, while others starkly differ from those found in OSS development. Our discussion focusses on different aspects of modularity as well as the availability of low-cost tools.


2021 ◽  
Vol 191 ◽  
pp. 518-523
Author(s):  
Oqaidi Mohammed ◽  
Ait Abdelouahid Rachida ◽  
Debauche Olivier ◽  
Marzak Abdelaziz
Keyword(s):  

2021 ◽  
Vol 120 (3) ◽  
pp. 184a
Author(s):  
Dylan George ◽  
Ashley Cadby ◽  
Timothy D. Craggs

Author(s):  
Javier San Agustin ◽  
Henrik Skovsgaard ◽  
Emilie Mollenbach ◽  
Maria Barret ◽  
Martin Tall ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document