scholarly journals Adapting Footfall Rhythmicity to Auditory Perturbations Affects Resilience of Locomotor Behavior: A Proof-of-Concept Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Deepak K. Ravi ◽  
Caroline C. Heimhofer ◽  
William R. Taylor ◽  
Navrag B. Singh

For humans, the ability to effectively adapt footfall rhythm to perturbations is critical for stable locomotion. However, only limited information exists regarding how dynamic stability changes when individuals modify their footfall rhythm. In this study, we recorded 3D kinematic activity from 20 participants (13 males, 18–30 years old) during walking on a treadmill while synchronizing with an auditory metronome sequence individualized to their baseline walking characteristics. The sequence then included unexpected temporal perturbations in the beat intervals with the subjects required to adapt their footfall rhythm accordingly. Building on a novel approach to quantify resilience of locomotor behavior, this study found that, in response to auditory perturbation, the mean center of mass (COM) recovery time across all participants who showed deviation from steady state (N = 15) was 7.4 (8.9) s. Importantly, recovery of footfall synchronization with the metronome beats after perturbation was achieved prior (+3.4 [95.0% CI +0.1, +9.5] s) to the recovery of COM kinematics. These results highlight the scale of temporal adaptation to perturbations and provide implications for understanding regulation of rhythm and balance. Thus, our study extends the sensorimotor synchronization paradigm to include analysis of COM recovery time toward improving our understanding of an individual’s resilience to perturbations and potentially also their fall risk.

Author(s):  
Yan Chen ◽  
Ward Whitt

In order to understand queueing performance given only partial information about the model, we propose determining intervals of likely values of performance measures given that limited information. We illustrate this approach for the mean steady-state waiting time in the $GI/GI/K$ queue. We start by specifying the first two moments of the interarrival-time and service-time distributions, and then consider additional information about these underlying distributions, in particular, a third moment and a Laplace transform value. As a theoretical basis, we apply extremal models yielding tight upper and lower bounds on the asymptotic decay rate of the steady-state waiting-time tail probability. We illustrate by constructing the theoretically justified intervals of values for the decay rate and the associated heuristically determined interval of values for the mean waiting times. Without extra information, the extremal models involve two-point distributions, which yield a wide range for the mean. Adding constraints on the third moment and a transform value produces three-point extremal distributions, which significantly reduce the range, producing practical levels of accuracy.


2021 ◽  
Author(s):  
Nitin Sai Beesabathuni ◽  
Priya S. Shah

AbstractAutophagy is a multistep degradative process that is essential for maintaining cellular homeostasis. Systematically quantifying flux through this pathway is critical for gaining fundamental insights and effectively modulating this process that is dysregulated during many diseases. Established methods to quantify flux use steady state measurements, which provide limited information about the perturbation and the cellular response. We present a theoretical and experimental framework to measure autophagic steps in the form of rates under non-steady state conditions. We use this approach to measure temporal responses to rapamycin and wortmannin treatments, two commonly used autophagy modulators. We quantified changes in autophagy rates in as little as 10 minutes, which can establish direct mechanisms for autophagy perturbation before feedback begins. We identified concentration-dependent effects of rapamycin on the initial and temporal progression of autophagy rates. We also found variable recovery time from wortmannin’s inhibition of autophagy, which is further accelerated by rapamycin. In summary, this new approach enables the quantification of autophagy flux with high sensitivity and temporal resolution and facilitates a comprehensive understanding of this process.


2017 ◽  
Vol 72 (5) ◽  
pp. 254-259 ◽  
Author(s):  
I. Burlacov ◽  
S. Hamann ◽  
H.-J. Spies ◽  
A. Dalke ◽  
J. Röpcke ◽  
...  

2020 ◽  
Vol 32 (3) ◽  
pp. 432-440
Author(s):  
Shaohui He ◽  
Chen Ye ◽  
Nanzhe Zhong ◽  
Minglei Yang ◽  
Xinghai Yang ◽  
...  

OBJECTIVEThe surgical treatment of an upper cervical spinal tumor (UCST) at C1–2/C1–3 is challenging due to anterior exposure and reconstruction. Limited information has been published concerning the effective approach and reconstruction for an anterior procedure after C1–2/C1–3 UCST resection. The authors attempted to introduce a novel, customized, anterior craniocervical reconstruction between the occipital condyles and inferior vertebrae through a modified high-cervical retropharyngeal approach (mHCRA) in addressing C1–2/C1–3 spinal tumors.METHODSSeven consecutive patients underwent 2-stage UCST resection with circumferential reconstruction. Posterior decompression and occiput-cervical instrumentation was conducted at the stage 1 operation, and anterior craniocervical reconstruction using a 3D-printed implant was performed between the occipital condyles and inferior vertebrae via an mHCRA. The clinical characteristics, perioperative complications, and radiological outcomes were reviewed, and the rationale for anterior craniocervical reconstruction was also clarified.RESULTSThe mean age of the 7 patients in the study was 47.6 ± 19.0 years (range 12–72 years) when referred to the authors’ center. Six patients (85.7%) had recurrent tumor status, and the interval from primary to recurrence status was 53.0 ± 33.7 months (range 24–105 months). Four patients (57.1%) were diagnosed with a spinal tumor involving C1–3, and 3 patients (42.9%) with a C1–2 tumor. For the anterior procedure, the mean surgical duration and average blood loss were 4.1 ± 0.9 hours (range 3.0–6.0 hours) and 558.3 ± 400.5 ml (range 100–1300 ml), respectively. No severe perioperative complications occurred, except 1 patient with transient dysphagia. The mean pre- and postoperative visual analog scale scores were 8.0 ± 0.8 (range 7–9) and 2.4 ± 0.5 (range 2.0–3.0; p < 0.001), respectively, and the mean improvement rate of cervical spinal cord function was 54.7% ± 13.8% (range 42.9%–83.3%) based on the modified Japanese Orthopaedic Association scale score (p < 0.001). Circumferential instrumentation was in good position and no evidence of disease was found at the mean follow-up of 14.8 months (range 7.3–24.2 months).CONCLUSIONSThe mHCRA provides optimal access to the surgical field at the C0–3 level. Customized anterior craniocervical fixation between the occipital condyles and inferior vertebrae can be feasible and effective in managing anterior reconstruction after UCST resection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Suter ◽  
Olivier Huguenin-Elie ◽  
Andreas Lüscher

AbstractAssessing the overall performance of ecosystems requires a quantitative evaluation of multifunctionality. We investigated plant species diversity effects on individual functions and overall multifunctionality in a grassland experiment with sown monocultures and mixtures comprising four key grass and legume species. Nitrogen fertilisation rates were 50, 150, and 450 kg N ha−1 yr−1 (N50, N150, N450). Ten functions were measured representing forage production, N cycling, and forage quality, all being related to either productivity or environmental footprint. Multifunctionality was analysed by a novel approach using the mean log response ratio across functions. Over three experimental years, mixture effects benefited all forage production and N cycling functions, while sustaining high forage quality. Thus, mixture effects did not provoke any trade-off among the analysed functions. High N fertilisation rates generally diminished mixture benefits. Multifunctionality of four-species mixtures was considerably enhanced, and mixture overall performance was up to 1.9 (N50), 1.8 (N150), and 1.6 times (N450) higher than in averaged monocultures. Multifunctionality of four-species mixtures at N50 was at least as high as in grass monocultures at N450. Sown grass–legume mixtures combining few complementary species at low to moderate N fertilisation sustain high multifunctionality and are a ‘ready-to-use’ option for the sustainable intensification of agriculture.


2021 ◽  
Vol 9 (7) ◽  
pp. 1463
Author(s):  
Tamirat Tefera Temesgen ◽  
Kristoffer Relling Tysnes ◽  
Lucy Jane Robertson

Cryptosporidium oocysts are known for being very robust, and their prolonged survival in the environment has resulted in outbreaks of cryptosporidiosis associated with the consumption of contaminated water or food. Although inactivation methods used for drinking water treatment, such as UV irradiation, can inactivate Cryptosporidium oocysts, they are not necessarily suitable for use with other environmental matrices, such as food. In order to identify alternative ways to inactivate Cryptosporidium oocysts, improved methods for viability assessment are needed. Here we describe a proof of concept for a novel approach for determining how effective inactivation treatments are at killing pathogens, such as the parasite Cryptosporidium. RNA sequencing was used to identify potential up-regulated target genes induced by oxidative stress, and a reverse transcription quantitative PCR (RT-qPCR) protocol was developed to assess their up-regulation following exposure to different induction treatments. Accordingly, RT-qPCR protocols targeting thioredoxin and Cryptosporidium oocyst wall protein 7 (COWP7) genes were evaluated on mixtures of viable and inactivated oocysts, and on oocysts subjected to various potential inactivation treatments such as freezing and chlorination. The results from the present proof-of-concept experiments indicate that this could be a useful tool in efforts towards assessing potential technologies for inactivating Cryptosporidium in different environmental matrices. Furthermore, this approach could also be used for similar investigations with other pathogens.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1299
Author(s):  
Shengli Lv

This paper analyzed the multi-machine repairable system with one unreliable server and one repairman. The machines may break at any time. One server oversees servicing the machine breakdown. The server may fail at any time with different failure rates in idle time and busy time. One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to whether the machines are all functioning normally or not. All the time distributions are exponential. Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the steady-state availability of the server, and other steady-state indices of the system are given. The transient-state indices of the system, including the reliability of the machines and the reliability of the server, are obtained by solving the transient-state probabilistic differential equations. The Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the system and the mean time to the first failure of the server. The case analysis and numerical illustration are presented to visualize the effects of the system parameters on various performance indices.


2013 ◽  
Vol 104 ◽  
pp. 268-275 ◽  
Author(s):  
Dragan D. Govedarica ◽  
Radmila M. Šećerov Sokolović ◽  
Dunja S. Sokolović ◽  
Slobodan M. Sokolović
Keyword(s):  

1985 ◽  
Vol 50 ◽  
Author(s):  
J-E. Andersson ◽  
O. Persson

AbstractThe results from a large number of single-hole packer tests in crystalline rock from three test sites in Sweden have been analysed statistically. Average hydraulic conductivity values for 25 m long test intervals along boreholes with a maximal length of about 700 m are used in this study. A comparison between steady state and transient analysis of the same test data has been performed.The mean vaule of the hydraulic conductivity determined from steady state analysis was found to be about two to three times higher compared to transient analysis. However, in some cases the steady state analysis resulted in 10 to 20 times higher values compared to the transient analysis. Such divergence between the two analysis methods may be caused by deviations from the assumed flow pattern, borehole skin effects and influence of hydraulic boundaries.


1998 ◽  
Vol 376 ◽  
pp. 149-182 ◽  
Author(s):  
MICHAEL B. MACKAPLOW ◽  
ERIC S. G. SHAQFEH

The sedimentation of fibre suspensions at low Reynolds number is studied using two different, but complementary, numerical simulation methods: (1) Monte Carlo simulations, which consider interparticle hydrodynamic interactions at all orders within the slender-body theory approximation (Mackaplow & Shaqfeh 1996), and (ii) dynamic simulations, which consider point–particle interactions and are accurate for suspension concentrations of nl3=1, where n and l are the number density and characteristic half-length of the fibres, respectively. For homogeneous, isotropic suspensions, the Monte Carlo simulations show that the hindrance of the mean sedimentation speed is linear in particle concentration up to at least nl3=7. The speed is well predicted by a new dilute theory that includes the effect of two-body interactions. Our dynamic simulations of dilute suspensions, however, show that interfibre hydrodynamic interactions cause the spatial and orientational distributions to become inhomogeneous and anisotropic. Most of the fibres migrate into narrow streamers aligned in the direction of gravity. This drives a downward convective flow within the streamers which serves to increase the mean fibre sedimentation speed. A steady-state orientation distribution develops which strongly favours fibre alignment with gravity. Although the distribution reaches a steady state, individual fibres continue to rotate in a manner that can be qualitatively described as a flipping between the two orientations aligned with gravity. The simulation results are in good agreement with published experimental data.


Sign in / Sign up

Export Citation Format

Share Document