scholarly journals Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts

2021 ◽  
Vol 9 (7) ◽  
pp. 1463
Author(s):  
Tamirat Tefera Temesgen ◽  
Kristoffer Relling Tysnes ◽  
Lucy Jane Robertson

Cryptosporidium oocysts are known for being very robust, and their prolonged survival in the environment has resulted in outbreaks of cryptosporidiosis associated with the consumption of contaminated water or food. Although inactivation methods used for drinking water treatment, such as UV irradiation, can inactivate Cryptosporidium oocysts, they are not necessarily suitable for use with other environmental matrices, such as food. In order to identify alternative ways to inactivate Cryptosporidium oocysts, improved methods for viability assessment are needed. Here we describe a proof of concept for a novel approach for determining how effective inactivation treatments are at killing pathogens, such as the parasite Cryptosporidium. RNA sequencing was used to identify potential up-regulated target genes induced by oxidative stress, and a reverse transcription quantitative PCR (RT-qPCR) protocol was developed to assess their up-regulation following exposure to different induction treatments. Accordingly, RT-qPCR protocols targeting thioredoxin and Cryptosporidium oocyst wall protein 7 (COWP7) genes were evaluated on mixtures of viable and inactivated oocysts, and on oocysts subjected to various potential inactivation treatments such as freezing and chlorination. The results from the present proof-of-concept experiments indicate that this could be a useful tool in efforts towards assessing potential technologies for inactivating Cryptosporidium in different environmental matrices. Furthermore, this approach could also be used for similar investigations with other pathogens.

2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1459
Author(s):  
Shalem Raju Modi ◽  
Tarja Kokkola

GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jun Wang ◽  
Holly R. Thomas ◽  
Zhang Li ◽  
Nan Cher Yeo ◽  
Hannah E. Scott ◽  
...  

AbstractCellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guihua Hu ◽  
Tao Hu ◽  
Yuhua Zhan ◽  
Wei Lu ◽  
Min Lin ◽  
...  

Abstract Noncoding RNAs (ncRNAs) can finely control the expression of target genes at the posttranscriptional level in prokaryotes. Regulatory small RNAs (sRNAs) designed to control target gene expression for applications in metabolic engineering and synthetic biology have been successfully developed and used. However, the effect on the heterologous expression of species- or strain-specific ncRNAs in other bacterial strains remains poorly understood. In this work, a Pseudomonas stutzeri species-specific regulatory ncRNA, NfiS, which has been shown to play an important role in the response to oxidative stress as well as osmotic stress in P. stutzeri A1501, was cloned and transferred to the Escherichia coli strain Trans10. Recombinant NfiS-expressing E. coli, namely, Trans10-nfiS, exhibited significant enhancement of tolerance to oxidative stress. To map the possible gene regulatory networks mediated by NfiS in E. coli under oxidative stress, a microarray assay was performed to delineate the transcriptomic differences between Trans10-nfiS and wild-type E. coli under H2O2 shock treatment conditions. In all, 1184 genes were found to be significantly altered, and these genes were divided into mainly five functional categories: stress response, regulation, metabolism related, transport or membrane protein and unknown function. Our results suggest that the P. stutzeri species-specific ncRNA NfiS acts as a regulator that integrates adaptation to H2O2 with other cellular stress responses and helps protect E. coli cells against oxidative damage.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2017 ◽  
Vol 72 (5) ◽  
pp. 254-259 ◽  
Author(s):  
I. Burlacov ◽  
S. Hamann ◽  
H.-J. Spies ◽  
A. Dalke ◽  
J. Röpcke ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1143
Author(s):  
Midori Sakashita ◽  
Tetsuhiro Tanaka ◽  
Reiko Inagi

Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease, and it is crucial to understand the pathophysiology of DKD. The control of blood glucose levels by various glucose-lowering drugs, the common use of inhibitors of the renin–angiotensin system, and the aging of patients with diabetes can alter the disease course of DKD. Moreover, metabolic changes and associated atherosclerosis play a major role in the etiology of DKD. The pathophysiology of DKD is largely attributed to the disruption of various cellular stress responses due to metabolic changes, especially an increase in oxidative stress. Therefore, many antioxidants have been studied as therapeutic agents. Recently, it has been found that NRF2, a master regulator of oxidative stress, plays a major role in the pathogenesis of DKD and bardoxolone methyl, an activator of NRF2, has attracted attention as a drug that increases the estimated glomerular filtration rate in patients with DKD. This review outlines the altered stress responses of cellular organelles in DKD, their involvement in the pathogenesis of DKD, and discusses strategies for developing therapeutic agents, especially bardoxolone methyl.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


Author(s):  
Metti K. Gari ◽  
Paul Lemke ◽  
Kelly H. Lu ◽  
Elizabeth D. Laudadio ◽  
Austin H. Henke ◽  
...  

Lithium cobalt oxide (LiCoO2), an example of nanoscale transition metal oxide and a widely commercialized cathode material in lithium ion batteries, has been shown to induce oxidative stress and generate intracellular reactive oxygen species (ROS) in model organisms.


Sign in / Sign up

Export Citation Format

Share Document