scholarly journals Deep Learning Algorithm Trained on Brain Magnetic Resonance Images and Clinical Data to Predict Motor Outcomes of Patients With Corona Radiata Infarct

2022 ◽  
Vol 15 ◽  
Author(s):  
Jeoung Kun Kim ◽  
Min Cheol Chang ◽  
Donghwi Park

The early and accurate prediction of the extent of long-term motor recovery is important for establishing specific rehabilitation strategies for stroke patients. Using clinical parameters and brain magnetic resonance images as inputs, we developed a deep learning algorithm to increase the prediction accuracy of long-term motor outcomes in patients with corona radiata (CR) infarct. Using brain magnetic resonance images and clinical data obtained soon after CR infarct, we developed an integrated algorithm to predict hand function and ambulatory outcomes of the patient 6 months after onset. To develop and evaluate the algorithm, we retrospectively recruited 221 patients with CR infarct. The area under the curve of the validation set of the integrated modified Brunnstrom classification prediction model was 0.891 with 95% confidence interval (0.814–0.967) and that of the integrated functional ambulatory category prediction model was 0.919, with 95% confidence interval (0.842–0.995). We demonstrated that an integrated algorithm trained using patients’ clinical data and brain magnetic resonance images obtained soon after CR infarct can promote the accurate prediction of long-term hand function and ambulatory outcomes. Future efforts will be devoted to finding more appropriate input variables to further increase the accuracy of deep learning models in clinical applications.

2020 ◽  
pp. 158-161
Author(s):  
Chandraprabha S ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy ◽  
Saranya M D ◽  
Satheesh Kumar S ◽  
...  

This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.


2020 ◽  
Author(s):  
Chong Chen ◽  
Han Zhou ◽  
Hui Zhang ◽  
Lulu Chen ◽  
Zhu Yan ◽  
...  

Abstract Groundwater resources play a vital role in production, human life and economic development. Effective prediction of groundwater levels would support better water resources management. Although machine learning algorithms have been studied and applied in many domains with good enough results, the researches in hydrologic domains are not adequate. This paper proposes a novel deep learning algorithm for groundwater level prediction based on spatiotemporal attention mechanism. Short-term (one month ahead) and long-term (twelve months ahead) prediction of groundwater level are conducted with observed groundwater levels collected from several boreholes in the middle reaches of the Heihe River Basin in northwestern China. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the performance of the proposed algorithm and several baseline models (i.e., SVR, Support Vector Regression; FNN, Feedforward Neural Networks; LSTM, Long Short-Term Memory neural network). The results show that the proposed model can effectively improve the prediction accuracy compared to the baseline models with MAE of 0.0754, RMSE of 0.0952 for short-term prediction and MAE of 0.0983, RMSE of 0.1215 for long-term prediction. This study provides a feasible and accurate approach for groundwater prediction which may facilitate decision making for water management.


Author(s):  
Bolun Lin ◽  
Mosha Cheng ◽  
Shuze Wang ◽  
Fulong Li ◽  
Qing Zhou

Objectives: This study aimed to develop models that can automatically detect anterior disc displacement (ADD) of the temporomandibular joint (TMJ) on magnetic resonance images (MRI) before orthodontic treatment to reduce the risk of developing serious complications after treatment. Methods: We used 9009 sagittal MRI of the TMJ as input and constructed three sets of deep learning models to detect ADD automatically. Deep learning models were developed using a convolutional neural network (CNN) based on the ResNet architecture and the “Imagenet” database. Five-fold cross-validation, over sampling, and data augmentation techniques were applied to reduce the risk of overfitting the model. The accuracy and area under the curve (AUC) of the three models were compared. Results: The performance of the maximum open mouth position model was excellent with accuracy and AUC of 0.970 (±0.007) and 0.990 (±0.005), respectively. For closed mouth position models the accuracy and AUC of diagnostic criteria One were 0.863 (±0.008) and 0.922 (±0.009), respectively significantly higher than that of diagnostic criteria two with an 0.839 (±0.013) (p = 0.009) and AUC of 0.885 (±0.018) (p = 0.003). The classification activation heat map also improved our understanding of the models and visually displayed the areas that play a key role in the model recognition process. Conclusion: Our CNN model resulted in high accuracy and AUC in detecting ADD and can therefore potentially be used by clinicians to assess ADD before orthodontic treatment and hence improve treatment outcomes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Edoardo Cipolletta ◽  
Maria Chiara Fiorentino ◽  
Sara Moccia ◽  
Irene Guidotti ◽  
Walter Grassi ◽  
...  

Objectives: This study aims to develop an automatic deep-learning algorithm, which is based on Convolutional Neural Networks (CNNs), for ultrasound informative-image selection of hyaline cartilage at metacarpal head level. The algorithm performance and that of three beginner sonographers were compared with an expert assessment, which was considered the gold standard.Methods: The study was divided into two steps. In the first one, an automatic deep-learning algorithm for image selection was developed using 1,600 ultrasound (US) images of the metacarpal head cartilage (MHC) acquired in 40 healthy subjects using a very high-frequency probe (up to 22 MHz). The algorithm task was to identify US images defined informative as they show enough information to fulfill the Outcome Measure in Rheumatology US definition of healthy hyaline cartilage. The algorithm relied on VGG16 CNN, which was fine-tuned to classify US images in informative and non-informative ones. A repeated leave-four-subject out cross-validation was performed using the expert sonographer assessment as gold-standard. In the second step, the expert assessed the algorithm and the beginner sonographers' ability to obtain US informative images of the MHC.Results: The VGG16 CNN showed excellent performance in the first step, with a mean area (AUC) under the receiver operating characteristic curve, computed among the 10 models obtained from cross-validation, of 0.99 ± 0.01. The model that reached the best AUC on the testing set, which we named “MHC identifier 1,” was then evaluated by the expert sonographer. The agreement between the algorithm, and the expert sonographer was almost perfect [Cohen's kappa: 0.84 (95% confidence interval: 0.71–0.98)], whereas the agreement between the expert and the beginner sonographers using conventional assessment was moderate [Cohen's kappa: 0.63 (95% confidence interval: 0.49–0.76)]. The conventional obtainment of US images by beginner sonographers required 6.0 ± 1.0 min, whereas US videoclip acquisition by a beginner sonographer lasted only 2.0 ± 0.8 min.Conclusion: This study paves the way for the automatic identification of informative US images for assessing MHC. This may redefine the US reliability in the evaluation of MHC integrity, especially in terms of intrareader reliability and may support beginner sonographers during US training.


Sign in / Sign up

Export Citation Format

Share Document