scholarly journals A Modified Miniscope System for Simultaneous Electrophysiology and Calcium Imaging in vivo

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaoting Wu ◽  
Xiangyu Yang ◽  
Lulu Song ◽  
Yang Wang ◽  
Yamin Li ◽  
...  

The miniscope system is one of the calcium (Ca2+) imaging tools with small size and lightweight and can realize the deep-brain Ca2+ imaging not confined to the cerebral cortex. Combining Ca2+ imaging and electrophysiology recording has been an efficient method for extracting high temporal-spatial resolution signals in the brain. In this study, a particular electrode probe was developed and assembled on the imaging lens to modify the miniscope system. The electrode probe can be tightly integrated into the lens of the miniscope without increasing the volume, weight, and implantation complexity. In vivo tests verified that the proposed modified system has realized the simultaneous recording of Ca2+ signals and local field potential (LFP) signal in the hippocampus CA1 region of an adult mouse.

2016 ◽  
Author(s):  
Nitin Gupta ◽  
Swikriti Saran Singh ◽  
Mark Stopfer

AbstractOscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly tested this idea in the locust olfactory system. We found that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we found that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrated that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.


2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


2002 ◽  
Vol 87 (4) ◽  
pp. 2137-2148 ◽  
Author(s):  
Sean M. O'Connor ◽  
Rune W. Berg ◽  
David Kleinfeld

We tested if coherent signaling between the sensory vibrissa areas of cerebellum and neocortex in rats was enhanced as they whisked in air. Whisking was accompanied by 5- to 15-Hz oscillations in the mystatial electromyogram, a measure of vibrissa position, and by 5- to 20-Hz oscillations in the differentially recorded local field potential (∇LFP) within the vibrissa area of cerebellum and within the ∇LFP of primary sensory cortex. We observed that only 10% of the activity in either cerebellum or sensory neocortex was significantly phase-locked to rhythmic motion of the vibrissae; the extent of this modulation is in agreement with the results from previous single-unit measurements in sensory neocortex. In addition, we found that 40% of the activity in the vibrissa areas of cerebellum and neocortex was significantly coherent during periods of whisking. The relatively high level of coherence between these two brain areas, in comparison with their relatively low coherence with whisking per se, implies that the vibrissa areas of cerebellum and neocortex communicate in a manner that is incommensurate with whisking. To the extent that the vibrissa areas of cerebellum and neocortex communicate over the same frequency band as that used by whisking, these areas must multiplex electrical activity that is internal to the brain with activity that is that phase-locked to vibrissa sensory input.


2018 ◽  
Vol 2 ◽  
pp. 247054701878778 ◽  
Author(s):  
Chung Sub Kim ◽  
Daniel Johnston

Growing evidence suggests a possible link between hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels and depression. In a recent study published in Molecular Psychiatry, we first demonstrate that Ih (the membrane current mediated by HCN channels) and HCN1 protein expression were increased in dorsal, but not in ventral, CA1 region following chronic, but not acute stress. This upregulation of Ih was restricted to the perisomatic region of CA1 neurons and contributed to a reduction of neuronal excitability. A reduction of HCN1 protein expression in dorsal CA1 region before the onset of chronic unpredictable stress-induced depression was sufficient to provide resilient effects to chronic unpredictable stress. Furthermore, in vivo block of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps, a manipulation known to increase intracellular calcium levels and upregulate Ih, produced anxiogenic-like behavior and an increase in Ih, similar to that observed in chronic unpredictable stress model of depression. Here, we share our view on (1) how the function and expression of HCN1 channels are changed in the brain in a subcellular region-specific manner during the development of depression and (2) how a reduction of HCN1 protein expression provides resilience to chronic stress.


2021 ◽  
Author(s):  
Richard Sando ◽  
Thomas C. Südhof

ABSTRACTNeural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.


2021 ◽  
Author(s):  
Norimitsu Suzuki ◽  
Malinda L. S. Tantirigama ◽  
Helena H.-Y. Huang ◽  
John M. Bekkers

Feedforward inhibitory circuits are key contributors to the complex interplay between excitation and inhibition in the brain. Little is known about the function of feedforward inhibition in the primary olfactory (piriform) cortex. Using in vivo two-photon targeted patch clamping and calcium imaging in mice, we find that odors evoke strong excitation in two classes of interneurons – neurogliaform (NG) cells and horizontal (HZ) cells – that provide feedforward inhibition in layer 1 of the piriform cortex. NG cells fire much earlier than HZ cells following odor onset, a difference that can be attributed to the faster odor-driven excitatory synaptic drive that NG cells receive from the olfactory bulb. As a consequence, NG cells strongly but transiently inhibit odor-evoked excitation in layer 2 principal cells, whereas HZ cells provide more diffuse and prolonged feedforward inhibition. Our findings reveal unexpected complexity in the operation of inhibition in the piriform cortex.


2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Isabel Arrieta-Cruz ◽  
Constantine Pavlides ◽  
Giulio Pasinetti

AbstractBased on evidence suggesting that deep brain stimulation (DBS) may promote certain cognitive processes, we have been interested in developing DBS as a means of mitigating memory and learning impairments in Alzheimer’s disease (AD). In this study we used an animal model of AD (TgCRND8 mice) to determine the effects of high-frequency stimulation (HFS) on non-amyloidogenic α-secretase activity and DBS in short-term memory. We tested our hypothesis using hippocampal slices (in vitro studies) from TgCRND8 mice to evaluate whether HFS increases α-secretase activity (non-amyloidogenic pathway) in the CA1 region. In a second set of experiments, we performed in vivo studies to evaluate whether DBS in midline thalamic region re-establishes hippocampal dependent short-term memory in TgCRND8 mice. The results showed that application of HFS to isolated hippocampal slices significantly increased synaptic plasticity in the CA1 region and promoted a 2-fold increase of non-amyloidogenic α-secretase activity, in comparison to low frequency stimulated controls from TgCRND8 mice. In the in vivo studies, DBS treatment facilitated acquisition memory in TgCRND8 mice, in comparison to their own baseline before treatment. These results provide evidence that DBS could enhance short-term memory in a mouse model of AD by increasing synaptic transmission and α-secretase activity in the CA1 region of hippocampus.


2014 ◽  
Vol 112 (4) ◽  
pp. 741-751 ◽  
Author(s):  
Ramanujan Srinath ◽  
Supratim Ray

Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors—phase consistency as well as amplitude covariation across trials—but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over- or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.


Sign in / Sign up

Export Citation Format

Share Document