scholarly journals Thinking caps for everyone? The role of neuro-enhancement by non-invasive brain stimulation in neuroscience and beyond

Author(s):  
Felix Duecker ◽  
Tom A. de Graaf ◽  
Alexander T. Sack
Author(s):  
Moussa A. Chalah ◽  
Naji Riachi ◽  
Rechdi Ahdab ◽  
Alain Créange ◽  
Jean-Pascal Lefaucheur ◽  
...  

Author(s):  
Zaira Cattaneo

Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), are largely employed in cognitive neuroscience to investigate the brain–behavior relationship. During the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. This chapter provides a synthetic description of mechanisms of actions of TMS and different types of tES, and reviews recent NIBS studies that have shed light on the neural underpinning of aesthetic evaluation of (visual) artworks. The chapter also considers methodological limitations of the reviewed studies and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mina Kandić ◽  
Vera Moliadze ◽  
Jamila Andoh ◽  
Herta Flor ◽  
Frauke Nees

It has been well-documented that the brain changes in states of chronic pain. Less is known about changes in the brain that predict the transition from acute to chronic pain. Evidence from neuroimaging studies suggests a shift from brain regions involved in nociceptive processing to corticostriatal brain regions that are instrumental in the processing of reward and emotional learning in the transition to the chronic state. In addition, dysfunction in descending pain modulatory circuits encompassing the periaqueductal gray and the rostral anterior cingulate cortex may also be a key risk factor for pain chronicity. Although longitudinal imaging studies have revealed potential predictors of pain chronicity, their causal role has not yet been determined. Here we review evidence from studies that involve non-invasive brain stimulation to elucidate to what extent they may help to elucidate the brain circuits involved in pain chronicity. Especially, we focus on studies using non-invasive brain stimulation techniques [e.g., transcranial magnetic stimulation (TMS), particularly its repetitive form (rTMS), transcranial alternating current stimulation (tACS), and transcranial direct current stimulation (tDCS)] in the context of musculoskeletal pain chronicity. We focus on the role of the motor cortex because of its known contribution to sensory components of pain via thalamic inhibition, and the role of the dorsolateral prefrontal cortex because of its role on cognitive and affective processing of pain. We will also discuss findings from studies using experimentally induced prolonged pain and studies implicating the DLPFC, which may shed light on the earliest transition phase to chronicity. We propose that combined brain stimulation and imaging studies might further advance mechanistic models of the chronicity process and involved brain circuits. Implications and challenges for translating the research on mechanistic models of the development of chronic pain to clinical practice will also be addressed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhongjie Bao ◽  
Belal Howidi ◽  
Amer M. Burhan ◽  
Paul Frewen

Systematic reviews of neuroimaging studies confirm stimulus-induced activity in response to verbal and non-verbal self-referential processing (SRP) in cortical midline structures, temporoparietal cortex and insula. Whether SRP can be causally modulated by way of non-invasive brain stimulation (NIBS) has also been investigated in several studies. Here we summarize the NIBS literature including 27 studies of task-based SRP comparing response between verbal and non-verbal SRP tasks. The studies differed in design, experimental tasks and stimulation parameters. Results support the role of left inferior parietal lobule (left IPL) in verbal SRP and for the medial prefrontal cortex when valenced stimuli were used. Further, results support roles for the bilateral parietal lobe (IPL, posterior cingulate cortex), the sensorimotor areas (the primary sensory and motor cortex, the premotor cortex, and the extrastriate body area) and the insula in non-verbal SRP (bodily self-consciousness). We conclude that NIBS may differentially modulate verbal and non-verbal SRP by targeting the corresponding brain areas.


2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


Sign in / Sign up

Export Citation Format

Share Document