Noninvasive Brain Stimulation: Contribution to Research in Neuroaesthetics

Author(s):  
Zaira Cattaneo

Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), are largely employed in cognitive neuroscience to investigate the brain–behavior relationship. During the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. This chapter provides a synthetic description of mechanisms of actions of TMS and different types of tES, and reviews recent NIBS studies that have shed light on the neural underpinning of aesthetic evaluation of (visual) artworks. The chapter also considers methodological limitations of the reviewed studies and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mina Kandić ◽  
Vera Moliadze ◽  
Jamila Andoh ◽  
Herta Flor ◽  
Frauke Nees

It has been well-documented that the brain changes in states of chronic pain. Less is known about changes in the brain that predict the transition from acute to chronic pain. Evidence from neuroimaging studies suggests a shift from brain regions involved in nociceptive processing to corticostriatal brain regions that are instrumental in the processing of reward and emotional learning in the transition to the chronic state. In addition, dysfunction in descending pain modulatory circuits encompassing the periaqueductal gray and the rostral anterior cingulate cortex may also be a key risk factor for pain chronicity. Although longitudinal imaging studies have revealed potential predictors of pain chronicity, their causal role has not yet been determined. Here we review evidence from studies that involve non-invasive brain stimulation to elucidate to what extent they may help to elucidate the brain circuits involved in pain chronicity. Especially, we focus on studies using non-invasive brain stimulation techniques [e.g., transcranial magnetic stimulation (TMS), particularly its repetitive form (rTMS), transcranial alternating current stimulation (tACS), and transcranial direct current stimulation (tDCS)] in the context of musculoskeletal pain chronicity. We focus on the role of the motor cortex because of its known contribution to sensory components of pain via thalamic inhibition, and the role of the dorsolateral prefrontal cortex because of its role on cognitive and affective processing of pain. We will also discuss findings from studies using experimentally induced prolonged pain and studies implicating the DLPFC, which may shed light on the earliest transition phase to chronicity. We propose that combined brain stimulation and imaging studies might further advance mechanistic models of the chronicity process and involved brain circuits. Implications and challenges for translating the research on mechanistic models of the development of chronic pain to clinical practice will also be addressed.


Author(s):  
Moussa A. Chalah ◽  
Naji Riachi ◽  
Rechdi Ahdab ◽  
Alain Créange ◽  
Jean-Pascal Lefaucheur ◽  
...  

2019 ◽  
Vol 98 (4) ◽  
pp. 279-289
Author(s):  
Paulo J. C. Suen ◽  
Andre R. Brunoni

Noninvasive brain stimulation therapies are a promising field for the development of new protocols for the treatment of neuropsychiatric disorders. They are based on the stimulation of neural networks with the intent of modeling their synaptic activity to adequate levels. For this, it is necessary to precisely determine which networks are related to which brain functions, and the normal activation level of each of these networks, so that it is possible to direct the stimulation to the affected networks in order to induce the desired effects. These relationships are under intense investigation by the scientific community, and will contribute to the advancement of treatments by neurostimulation, with the emergence of increasingly accurate and effective protocols for different disorders. Currently, the most used techniques are Transcranial Direct Current Stimulation and Transcranial Magnetic Stimulation, with the most common applications being for treating Major Depressive Disorder. The advancement of research in this field may determine new target networks for stimulation in the treatment of other disorders, extending the application of these techniques and also our knowledge about brain functioning.


2020 ◽  
Author(s):  
Julien Vezoli ◽  
Martin Vinck ◽  
Conrado A. Bosman ◽  
Andre M. Bastos ◽  
Christopher M Lewis ◽  
...  

What is the relationship between anatomical connection strength and rhythmic synchronization? Simultaneous recordings of 15 cortical areas in two macaque monkeys show that interareal networks are functionally organized in spatially distinct modules with specific synchronization frequencies, i.e. frequency-specific functional connectomes. We relate the functional interactions between 91 area pairs to their anatomical connection strength defined in a separate cohort of twenty six subjects. This reveals that anatomical connection strength predicts rhythmic synchronization and vice-versa, in a manner that is specific for frequency bands and for the feedforward versus feedback direction, even if interareal distances are taken into account. These results further our understanding of structure-function relationships in large-scale networks covering different modality-specific brain regions and provide strong constraints on mechanistic models of brain function. Because this approach can be adapted to non-invasive techniques, it promises to open new perspectives on the functional organization of the human brain.


2019 ◽  
Vol 238 (1) ◽  
pp. 1-16
Author(s):  
Zaira Cattaneo

AbstractDuring the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. Here, I review studies that have employed transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to investigate neurocognitive mechanisms mediating visual aesthetic appreciation for different stimuli categories (faces, bodies, paintings). The review first considers studies that have assessed the possible causal contribution of cortical regions in mediating aesthetic appreciation along the visual ventral and dorsal pathways (i.e., the extrastriate body area, the motion-sensitive region V5/MT+ , the lateral occipital complex and the posterior parietal cortex). It then considers TMS and tDCS studies that have targeted premotor and motor regions, as well as other areas involved in body and facial expression processing (such as the superior temporal sulcus and the somatosensory cortex) to assess their role in aesthetic evaluation. Finally, it discusses studies that have targeted medial and dorsolateral prefrontal regions leading to significant changes in aesthetic appreciation for both biological stimuli (faces and bodies) and artworks. Possible mechanisms mediating stimulation effects on aesthetic judgments are discussed. A final section considers both methodological limitations of the reviewed studies (including levels of statistical power and the need for further replication) and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.


Author(s):  
Simone Rossi ◽  
Emiliano Santarnecchi ◽  
Gaetano Valenza ◽  
Monica Ulivelli

Neuromodulation refers to invasive, minimally invasive or non-invasive techniques to stimulate discrete cortical or subcortical brain regions with therapeutic purposes in otherwise intractable patients: for example, thousands of advanced Parkinsonian patients, as well as patients with tremor or dystonia, benefited by deep brain stimulation (DBS) procedures (neural targets: basal ganglia nuclei). A new era for DBS is currently opening for patients with drug-resistant depression, obsessive-compulsive disorders, severe epilepsy, migraine and chronic pain (neural targets: basal ganglia and other subcortical nuclei or associative fibres). Vagal nerve stimulation (VNS) has shown clinical benefits in patients with pharmacoresistant epilepsy and depression. Non-invasive brain stimulation neuromodulatory techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are also being increasingly investigated for their therapeutic potential in several neurological and psychiatric disorders. In this review, we first address the most common neural targets of each of the mentioned brain stimulation techniques, and the known mechanisms of their neuromodulatory action on stimulated brain networks. Then, we discuss how DBS, VNS, rTMS and tDCS could impact on the function of brainstem centres controlling vital functions, critically reviewing their acute and long-term effects on brain sympathetic outflow controlling heart function and blood pressure. Finally, as there is clear experimental evidence in animals that brain stimulation can affect autonomic and heart functions, we will try to give a critical perspective on how it may enhance our understanding of the cortical/subcortical mechanisms of autonomic cardiovascular regulation, and also if it might find a place among therapeutic opportunities in patients with otherwise intractable autonomic dysfunctions.


2019 ◽  
Author(s):  
Gabriel Castrillon ◽  
Nico Sollmann ◽  
Katarzyna Kurcyus ◽  
Adeel Razi ◽  
Sandro M. Krieg ◽  
...  

AbstractNon-invasive brain stimulation reliably modulates brain activity and symptoms of neuropsychiatric disorders. However, stimulation effects substantially vary across individuals and brain regions. We combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neuronal basis of inter-individual and inter-areal differences after TMS. We found that stimulating sensory and cognitive areas yielded fundamentally heterogeneous effects. Stimulation of occipital cortex enhanced brain-wide functional connectivity and biophysical modeling identified increased local inhibition and enhanced forward-signaling after TMS. Conversely, frontal stimulation decreased functional connectivity, associated with local disinhibition and disruptions of both feedforward and feedback connections. Finally, we identified brain-wide functional integration as a predictive marker for these heterogeneous stimulation effects in individual subjects. Together, our study suggests that modeling of local and global signaling parameters of a target area will improve the specificity of non-invasive brain stimulation for research and clinical applications.


2002 ◽  
Vol 4 (2) ◽  
pp. 197-210 ◽  

Gender and aging moderate brain-behavior relationships. Advances in neuroscience enable integration of neurobehavioral, neuroanatomic, and neurophysiology measures. Here we present neurobehavioral studies thai examine cognitive and emotion processing in healthy men and women and highlight the effects of sex differences and aqinq. Neuroanatomic studies with maqnetic resonance imaging (MRI) indicate that the progressive decrease in brain volume affects froniotemporal brain regions in men more than in Vi/omen, Functional imaging methods suggest sex differences in rate of blood flow, pattern of glucose metabolism, and receptor activity. The role of ovarian hormones is important in elucidating the observed relationships. A life span perspective on gender differences through the integration of available methodologies will advance understanding healthy people and the effects of brain disorders.


Author(s):  
Pushpinder Walia ◽  
Abhishek Ghosh ◽  
Shubhmohan Singh ◽  
Anirban Dutta

Background: Maladaptive neuroplasticity related learned response in substance use disorder (SUD) can be ameliorated using non-invasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation. Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on competing neurobehavioral decision systems model. Next objective was to conduct computational simulation of NIBS of cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD) related dysfunctional “cue-reactivity” – a closely related construct of “craving” that is a core symptom. Our third objective was to test the feasibility of our neuroimaging guided rational NIBS approach in healthy humans. Methods: “Cue-reactivity” can be measured using behavioral paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG), metrics of sensorimotor gating. Therefore, we conducted computational simulation of NIBS, including transcranial direct current stimulation(tDCS) and transcranial alternating current stimulation(tACS) of the cerebellar cortex and deep cerebellar nuclei(DCN), of the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational neuroimaging guided NIBS approach for cerebellar lobule (VII) and prefrontal cortex based on healthy human study. Results: Simulation study of cerebellar tDCS induced gamma oscillations in the cerebral cortex while tTIS induced gamma-to-beta frequency shift. Experimental fNIRS study found that 2mA cerebellar tDCS evoked similar oxyhemoglobin(HbO) response in-the-range of 5x10-6M across cerebellum and PFC brain regions (=0.01); however, infra-slow (0.01–0.10 Hz) prefrontal cortex HbO driven(phase-amplitude-coupling, PAC) 4Hz, ±2mA (max.) cerebellar tACS evoked HbO in-the-range of 10-7M that was statistically different (=0.01) across those brain regions. Conclusion: Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC as well as fNIRS-driven ctACS at 4Hz that may facilitate cerebellar cognitive function via the frontoparietal network. Future work needs to combine fNIRS with EEG for multi-modal imaging.


Sign in / Sign up

Export Citation Format

Share Document