scholarly journals The Role of Immunotherapy to Overcome Resistance in Viral-Associated Head and Neck Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Rebecca R. Pharaon ◽  
Yan Xing ◽  
Mark Agulnik ◽  
Victoria M. Villaflor

A subset of head and neck cancers arising in the oropharynx and the nasopharynx are associated with human papillomavirus or Epstein–Barr virus. Unfortunately, limited treatment options exist once patients develop recurrent or metastatic disease in these cancers. Interest has risen in utilizing novel strategies including combination immune checkpoint inhibitors, vaccines, and adoptive cellular therapy, to improve treatment response and outcomes. Several ongoing studies are investigating the potential to overcome resistance to standard of care chemoradiation therapy with monotherapy or combination immunotherapy strategies in these viral-associated head and neck cancers.

2018 ◽  
Vol 8 ◽  
Author(s):  
Queenie Fernandes ◽  
Maysaloun Merhi ◽  
Afsheen Raza ◽  
Varghese Philipose Inchakalody ◽  
Nassima Abdelouahab ◽  
...  

2021 ◽  
Vol 14 ◽  
pp. 175628482110244
Author(s):  
Vanessa Wookey ◽  
Axel Grothey

Colorectal cancer (CRC) is the third most common cancer type in both men and women in the USA. Most patients with CRC are diagnosed as local or regional disease. However, the survival rate for those diagnosed with metastatic disease remains disappointing, despite multiple treatment options. Cancer therapies for patients with unresectable or metastatic CRC are increasingly being driven by particular biomarkers. The development of various immune checkpoint inhibitors has revolutionized cancer therapy over the last decade by harnessing the immune system in the treatment of cancer, and the role of immunotherapy continues to expand and evolve. Pembrolizumab is an anti-programmed cell death protein 1 immune checkpoint inhibitor and has become an essential part of the standard of care in the treatment regimens for multiple cancer types. This paper reviews the increasing evidence supporting and defining the role of pembrolizumab in the treatment of patients with unresectable or metastatic CRC.


2020 ◽  
Author(s):  
Aditya Thandoni ◽  
Andrew Zloza ◽  
Devora Schiff ◽  
Malay Rao ◽  
Kwok-wai Lo ◽  
...  

AbstractNasopharyngeal carcinoma (NPC) is a malignancy endemic to East Asia and is caused by Epstein-Barr Virus (EBV)-mediated cancerous transformation of epithelial cells. The standard of care treatment for NPC involves radiation and chemotherapy. While treatment outcomes continue to improve, up to 50% of patients can be expected to recur by five years, and additional innovative treatment options are needed. We posit that a potential way to do this is by targeting the underlying cause of malignant transformation, namely EBV. One method by which EBV escapes immune surveillance is by undergoing latent phase replication, during which EBV expression of immunogenic proteins is reduced. However, chemoradiation is known to drive conversion of EBV from a latent to a lytic phase. This creates an opportunity for the targeting of EBV-infected cells utilizing anti-viral drugs. Indeed, we found that combining acyclovir with cisplatin and radiation significantly decreases the viability of the EBV-infected C666-1 cell line. Western blot quantification revealed a resultant increase of thymidine kinase (TK) and apoptosis-inducing mediators, cleaved PARP (cPARP) and phosphorylated ERK (pERK). These studies suggest that the addition of anti-viral drugs to frontline chemoradiation may improve outcomes in patients treated for EBV-related NPC and future in vivo and clinical studies are needed.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hitomi Kawamura ◽  
Sho Koyasu ◽  
Akihiko Sugimoto ◽  
Yuji Nakamoto

Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4677-4684 ◽  
Author(s):  
Gianpietro Dotti ◽  
Barbara Savoldo ◽  
Martin Pule ◽  
Karin C. Straathof ◽  
Ettore Biagi ◽  
...  

Abstract Effector-memory T cells expressing Fas (Apo-1/CD95) are switched to an apoptotic program by cross-linking with Fas-ligand (FasL). Consequently, tumors that express FasL can induce apoptosis of infiltrating Fas-positive T lymphocytes and subdue any antitumor host immune response. Since Epstein-Barr virus (EBV)-associated tumors such as Hodgkin lymphoma (HL) and nasopharyngeal carcinoma (NPC) express FasL, we determined whether EBV-specific cytotoxic T lymphocytes (EBV-CTLs) could be modified to resist this evasion strategy. We show that long-term down-modulation of Fas can be achieved in EBV-CTLs by transduction with small interfering RNA (siRNA) encoded in a retrovirus. Modified T cells resisted Fas/FasL-mediated apoptosis compared with control cells and showed minimal cleavage of the caspase3 substrate poly(ADP-ribose) polymerase (PARP) protein after Fas engagement. Prolonged Fas stimulation selected a uniformly Faslow and FasL resistant population. Removal of responsiveness to this single death signal had no other discernible effects on EBV-CTLs. In particular, it did not lead to their autonomous growth since the modified EBV-CTLs remained polyclonal, and their survival and proliferation retained dependence on antigen-specific stimulation and on the presence of other physiologic growth signals. EBV-CTLs with knocked down Fas should have a selective functional and survival advantage over unmodified EBV-CTLs in the presence of tumors expressing FasL and may be of value for adoptive cellular therapy. (Blood. 2005;105:4677-4684)


2008 ◽  
Vol 21 (2) ◽  
pp. 25-27
Author(s):  
Dorota Polz ◽  
Małgorzata Polz-Dacewicz ◽  
Agnieszka Stec ◽  
Wojciech Chlebny

2020 ◽  
Author(s):  
Deeksha G Lahori ◽  
Pegah Varamini

In recent years, cancer immunotherapy has evolved as an exciting novel strategy for researchers and clinicians worldwide. Immunotherapeutic agents such as immune checkpoint blockers have changed the standard-of-care treatment provided for many tumors. Unfortunately, only a small proportion of patients respond effectively to these checkpoint inhibitors. Moreover, the immunosuppressive pathways for cancer are probably too complicated to achieve optimal outcome with immune checkpoint inhibitors alone. Combining current therapeutic options and immunotherapy-based approaches is being explored as an effective strategy to treat cancer. The use of nanotechnology-based platforms for delivery of immunotherapeutic agents or combination therapy could offer a major advantage over conventional anticancer treatment options. This review highlights the potential role of different nanotechnology-based strategies in improving the efficacy of immune checkpoint blockade therapy.


Sign in / Sign up

Export Citation Format

Share Document