scholarly journals Rhein Suppresses Lung Inflammatory Injury Induced by Human Respiratory Syncytial Virus Through Inhibiting NLRP3 Inflammasome Activation via NF-κB Pathway in Mice

2020 ◽  
Vol 10 ◽  
Author(s):  
Cunsi Shen ◽  
Zhengguang Zhang ◽  
Tong Xie ◽  
Jianjian Ji ◽  
Jianya Xu ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Carrie-Anne Malinczak ◽  
Charles F. Schuler ◽  
Angela J. Duran ◽  
Andrew J. Rasky ◽  
Mohamed M. Mire ◽  
...  

Respiratory syncytial virus (RSV) infects most infants by two years of age. It can cause severe disease leading to an increased risk of developing asthma later in life. Previously, our group has shown that RSV infection in mice and infants promotes IL-1β production. Here, we characterized the role of NLRP3-Inflammasome activation during RSV infection in adult mice and neonates. We observed that the inhibition of NLRP3 activation using the small molecule inhibitor, MCC950, or in genetically modified NLRP3 knockout (Nlrp3−/−) mice during in vivo RSV infection led to decreased lung immunopathology along with a reduced expression of the mucus-associated genes and reduced production of innate cytokines (IL-1β, IL-33 and CCL2) linked to severe RSV disease while leading to significant increases in IFN-β. NLRP3-inflammasome inhibition or deletion diminished Th2 cytokines and inflammatory cell infiltration into the lungs. Furthermore, NLRP3 inhibition or deletion during early-life RSV infection led to reducing viral-exacerbated allergic response in a mouse model of RSV-induced allergy exacerbation. Here, we demonstrated the critical role of NLRP3-inflammasome activation in RSV immunopathology and the related long-term airway alteration. Moreover, these findings suggest the NLRP3-inflammasome as a potential therapeutic target to attenuate severe RSV disease and limit childhood asthma development.


Thorax ◽  
2012 ◽  
Vol 68 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Kathy Triantafilou ◽  
Satwik Kar ◽  
Emmanouil Vakakis ◽  
Sailesh Kotecha ◽  
Martha Triantafilou

Author(s):  
Yali Zhang ◽  
Peipei Zhu ◽  
Xiaofeng Wu ◽  
Tianli Yuan ◽  
Zhangyao Su ◽  
...  

Abstract Microcystin-LR (MC-LR), the most common and toxic microcystin (MC) present in freshwater, poses a substantial threat to human health, especially hepatotoxicity. Recent evidence reveals that the NLRP3 inflammasome plays an important role in liver injury by activating caspase-1 to promote interleukin-1β (IL-1β) secretion. In this study, we investigated the possible role of NLRP3 inflammasome activation in MC-LR-induced mouse liver inflammatory injury. We found that MC-LR administered to mice by oral gavage mainly accumulated in liver and induced the activation of the NLRP3 inflammasome and production of mature IL-1β. Additionally, we observed an increase in the levels of NLRP3 inflammasome-related proteins and the proportion of pyroptosis in MC-LR-treated AML-12 cells. We also found that inhibition of NLRP3 in mice attenuated MC-LR-induced IL-1β production, indicating an essential role for NLRP3 in MC-LR-induced liver inflammatory injury. In addition, we found that inhibition of FOXO1 by AKT-mediated hyperphosphorylation, due to protein phosphatase 2A (PP2A) inhibition, is required for MC-LR-induced expression of NLRP3. Taken together, our in vivo and in vitro findings suggest a model in which the NLRP3 inflammasome activation, a result of AKT-mediated hyperphosphorylation of FOXO1 through inhibition of PP2A, plays a key role in MC-LR–induced liver inflammatory injury via IL-1β secretion and pyroptotic cell death.


2014 ◽  
Vol 307 (2) ◽  
pp. L173-L185 ◽  
Author(s):  
Yang Zhang ◽  
Gongjian Liu ◽  
Randal O. Dull ◽  
David E. Schwartz ◽  
Guochang Hu

The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 932
Author(s):  
Lori Bedient ◽  
Swechha Mainali Pokharel ◽  
Kim R. Chiok ◽  
Indira Mohanty ◽  
Sierra S. Beach ◽  
...  

Human respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis and pneumonia in infants and children worldwide. Inflammation induced by RSV infection is responsible for its hallmark manifestation of bronchiolitis and pneumonia. The cellular debris created through lytic cell death of infected cells is a potent initiator of this inflammation. Macrophages are known to play a pivotal role in the early innate immune and inflammatory response to viral pathogens. However, the lytic cell death mechanisms associated with RSV infection in macrophages remains unknown. Two distinct mechanisms involved in lytic cell death are pyroptosis and necroptosis. Our studies revealed that RSV induces lytic cell death in macrophages via both of these mechanisms, specifically through the ASC (Apoptosis-associated speck like protein containing a caspase recruitment domain)-NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome activation of both caspase-1 dependent pyroptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), as well as a mixed lineage kinase domain like pseudokinase (MLKL)-dependent necroptosis. In addition, we demonstrated an important role of reactive oxygen species (ROS) during lytic cell death of RSV-infected macrophages.


Sign in / Sign up

Export Citation Format

Share Document