scholarly journals Effect of Hydrolyzed Bird’s Nest on β-Cell Function and Insulin Signaling in Type 2 Diabetic Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Ker Woon Choy ◽  
Zuhaida Md Zain ◽  
Dharmani Devi Murugan ◽  
Nelli Giribabu ◽  
Nor Hisam Zamakshshari ◽  
...  

Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird’s nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it’s effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cai Tan ◽  
Zhihua Zheng ◽  
Xiaogang Wan ◽  
Jiaqing Cao ◽  
Ran Wei ◽  
...  

AbstractThe change in gut microbiota is an important mechanism of the amelioration of type 2 diabetes mellitus (T2DM) after bariatric surgery. Here, we observe that the modified jejunoileal bypass effectively decreases body weight gain, fasting blood glucose, and lipids level in serum; additionally, islet β-cell function, glucose tolerance, and insulin resistance were markedly ameliorated. The hypoglycemic effect and the improvement in islet β-cell function depend on the changes in gut microbiota structure. modified jejunoileal bypass increases the abundance of gut Escherichia coli and Ruminococcus gnavus and the levels of serum glycine, histidine, and glutamine in T2DM rats; and decreases the abundance of Prevotella copri and the levels of serum branched chain amino acids, which are significantly related to the improvement of islet β-cell function in T2DM rats. Our results suggest that amino acid metabolism may contribute to the islet β-cell function in T2DM rats after modified jejunoileal bypass and that improving gut microbiota composition is a potential therapeutic strategy for T2DM.


2015 ◽  
Vol 224 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Xin-gang Yao ◽  
Xin Xu ◽  
Gai-hong Wang ◽  
Min Lei ◽  
Ling-ling Quan ◽  
...  

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2+ channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.


2007 ◽  
Vol 13 (3) ◽  
pp. 283-290 ◽  
Author(s):  
Guillermo Umpierrez ◽  
Dawn Smiley ◽  
Aidar Gosmanov ◽  
Donald Thomason

2011 ◽  
Vol 106 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Pál Brasnyó ◽  
Gergő A. Molnár ◽  
Márton Mohás ◽  
Lajos Markó ◽  
Boglárka Laczy ◽  
...  

Although resveratrol has widely been studied for its potential health benefits, little is known about its metabolic effects in humans. Our aims were to determine whether the polyphenol resveratrol improves insulin sensitivity in type 2 diabetic patients and to gain some insight into the mechanism of its action. After an initial general examination (including blood chemistry), nineteen patients enrolled in the 4-week-long double-blind study were randomly assigned into two groups: a resveratrol group receiving oral 2 × 5 mg resveratrol and a control group receiving placebo. Before and after the second and fourth weeks of the trial, insulin resistance/sensitivity, creatinine-normalised ortho-tyrosine level in urine samples (as a measure of oxidative stress), incretin levels and phosphorylated protein kinase B (pAkt):protein kinase B (Akt) ratio in platelets were assessed and statistically analysed. After the fourth week, resveratrol significantly decreased insulin resistance (homeostasis model of assessment for insulin resistance) and urinary ortho-tyrosine excretion, while it increased the pAkt:Akt ratio in platelets. On the other hand, it had no effect on parameters that relate to β-cell function (i.e. homeostasis model of assessment of β-cell function). The present study shows for the first time that resveratrol improves insulin sensitivity in humans, which might be due to a resveratrol-induced decrease in oxidative stress that leads to a more efficient insulin signalling via the Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document