scholarly journals Resistance Exercise and Whey Protein Supplementation Reduce Mechanical Allodynia and Spinal Microglia Activation After Acute Muscle Trauma in Rats

2021 ◽  
Vol 12 ◽  
Author(s):  
Gusthavo Rodrigues ◽  
Thamyris Moraes ◽  
Lívia Elisei ◽  
Iago Malta ◽  
Rafaela dos Santos ◽  
...  

Muscle injury caused by direct trauma to the skeletal muscle is among the main musculoskeletal disorders. Non-pharmacological treatments have been effective in controlling muscle injury–induced pain; however, there are just a few studies in the literature investigating this response. Thus, the present study aimed to evaluate the effect of a resistance exercise training protocol combined or not with whey protein supplementation on mechanical allodynia induced by muscle injury. In addition, we also investigated the involvement of spinal glial cells in this process. For this purpose, male Wistar rats underwent a muscle injury model induced by direct trauma to the gastrocnemius muscle. Mechanical allodynia was measured by a digital von Frey algesimeter test. To evaluate the effect of exercise and/or supplementation on mechanical allodynia, the animals practiced exercises three times a week for 14 days and received supplementation daily for 14 days, respectively. Moreover, the effect of both the participation of spinal glial cells in the muscle injury and the resistance exercise training and/or whey protein supplementation on these cells was also investigated by the Western blot assay. The results demonstrated that resistance exercise training and whey protein supplementation, combined or alone, reduced mechanical allodynia. These treatments also reduced the number of interstitial cells and pro-inflammatory cytokine IL-6 levels in the injured muscle. It was also found that spinal microglia and astrocytes are involved in muscle injury, and that resistance exercise training combined with whey protein supplementation inhibits spinal microglia activation. The results suggest that both resistance exercise training and whey protein supplementation may be effective non-pharmacological treatments to control pain in the muscle after injury induced by acute trauma.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Cody T. Haun ◽  
C. Brooks Mobley ◽  
Christopher G. Vann ◽  
Matthew A. Romero ◽  
Paul A. Roberson ◽  
...  

2018 ◽  
Vol 108 (5) ◽  
pp. 1043-1059 ◽  
Author(s):  
Dominique S M ten Haaf ◽  
Malou A H Nuijten ◽  
Martijn F H Maessen ◽  
Astrid M H Horstman ◽  
Thijs M H Eijsvogels ◽  
...  

ABSTRACT Background Increasing protein intake has been suggested as an effective strategy to ameliorate age-related loss of muscle mass and strength. Current reviews assessing the effect of protein supplementation are strongly influenced by the inclusion of studies with frail older adults. Objectives We assessed the effect of protein supplementation on lean body mass, muscle strength, and physical performance in exclusively nonfrail community-dwelling older adults. Moreover, we assessed the superior effects of protein supplementation during concomitant resistance exercise training on muscle characteristics. Design A systematic literature search was conducted on PubMed, Embase, and Web of Science up to 15 May 2018. We included randomized controlled trials that assessed the effect of protein supplementation on lean body mass, muscle thigh cross-sectional area, muscle strength, gait speed, and chair-rise ability and performed random-effects meta-analyses. Results Data from 36 studies with 1682 participants showed no significant effects of protein supplementation on changes in lean body mass [standardized mean difference (SMD): 0.11; 95% CI: −0.06, 0.28], handgrip strength (SMD: 0.58; 95% CI: −0.08, 1.24), lower extremity muscle strength (SMD: 0.03; 95% CI: −0.20, 0.27), gait speed (SMD: 0.41; 95% CI: −0.04, 0.85), or chair-rise ability (SMD: 0.10; 95%: CI −0.08, 0.28) compared with a control condition in nonfrail community-dwelling older adults. Moreover, no superior effects of protein supplementation were found during concomitant resistance exercise training on muscle characteristics. Conclusions Protein supplementation in nonfrail community-dwelling older adults does not lead to increases in lean body mass, muscle cross-sectional area, muscle strength, or physical performance compared with control conditions; nor does it exert superior effects when added to resistance exercise training. Habitual protein intakes of most study participants were already sufficient, and protein interventions differed in terms of type of protein, amount, and timing. Future research should clarify what specific protein supplementation protocol is beneficial for nonfrail community-dwelling older adults with low habitual protein intake.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Cody T. Haun ◽  
C. Brooks Mobley ◽  
Christopher G. Vann ◽  
Matthew A. Romero ◽  
Paul A. Roberson ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1072 ◽  
Author(s):  
Vanessa Oertzen-Hagemann ◽  
Marius Kirmse ◽  
Britta Eggers ◽  
Kathy Pfeiffer ◽  
Katrin Marcus ◽  
...  

Evidence has shown that protein supplementation following resistance exercise training (RET) helps to further enhance muscle mass and strength. Studies have demonstrated that collagen peptides containing mostly non-essential amino acids increase fat-free mass (FFM) and strength in sarcopenic men. The aim of this study was to investigate whether collagen peptide supplementation in combination with RET influences the protein composition of skeletal muscle. Twenty-five young men (age: 24.2 ± 2.6 years, body mass (BM): 79.6 ± 5.6 kg, height: 185.0 ± 5.0 cm, fat mass (FM): 11.5% ± 3.4%) completed body composition and strength measurements and vastus lateralis biopsies were taken before and after a 12-week training intervention. In a double-blind, randomized design, subjects consumed either 15 g of specific collagen peptides (COL) or a non-caloric placebo (PLA) every day within 60 min after their training session. A full-body hypertrophy workout was completed three times per week and included four exercises using barbells. Muscle proteome analysis was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). BM and FFM increased significantly in COL compared with PLA, whereas no differences in FM were detected between the two groups. Both groups improved in strength levels, with a slightly higher increase in COL compared with PLA. In COL, 221 higher abundant proteins were identified. In contrast, only 44 proteins were of higher abundance in PLA. In contrast to PLA, the upregulated proteins in COL were mostly associated with the protein metabolism of the contractile fibers. In conclusion, the use of RET in combination with collagen peptide supplementation results in a more pronounced increase in BM, FFM, and muscle strength than RET alone. More proteins were upregulated in the COL intervention most of which were associated with contractile fibers.


2018 ◽  
Vol 148 (11) ◽  
pp. 1723-1732 ◽  
Author(s):  
Andrew M Holwerda ◽  
Maarten Overkamp ◽  
Kevin J M Paulussen ◽  
Joey S J Smeets ◽  
Janneau van Kranenburg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document