scholarly journals Inhibitory Effect of Punicalagin on Inflammatory and Angiogenic Activation of Human Umbilical Vein Endothelial Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Liu ◽  
Yanghui Ou ◽  
Yumeng Yang ◽  
Xuemei Zhang ◽  
Liqi Huang ◽  
...  

Punicalagin, a major ellagitannin isolated from pomegranate, is proved to have various pharmacological activities with an undefined therapy mechanism. The objective of this research was to demonstrate the effect of punicalagin on anti-inflammatory and angiogenic activation in human umbilical vein endothelial cells (HUVECs) and their potential mechanisms. Endothelial-leukocyte adhesion assay was applied to evaluate primary cultures of HUVECs activation following tumor necrosis factor alpha (TNF-α) treatment. The endothelial cell proliferation, migration, permeability and tube formation were assessed by EdU assay, wound migration assay, trans-endothelial electrical resistances (TEER) assay, and capillary-like tube formation assay, respectively. In addition, the expression of relevant proteins was assessed using Western blot analysis. We confirmed that punicalagin could reduce the adhesion of human monocyte cells to HUVECs in vitro and in vivo. Further, punicalagin decreased the expression of mRNA and proteins of ICAM-1 and VCAM-1 in HUVECs. Moreover, punicalagin inhibited permeability, proliferation, migration, and tube formation in VEGF-induced HUVECs, suppressed IKK-mediated activation of NF-κB signaling in TNF-α-induced endothelial cells, and inhibited vascular endothelial growth factor receptor 2 (VEGFR2) activation and downstream p-PAK1. Our findings indicated that punicalagin might have a protective effect on HUVECs activation, which suggested that punicalagin functions through an endothelial mediated mechanism for treating various disorders such as, cancer, rheumatoid arthritis, and cardiovascular disease.

1989 ◽  
Vol 61 (01) ◽  
pp. 101-105 ◽  
Author(s):  
Bonnie J Warn-Cramer ◽  
Fanny E Almus ◽  
Samuel I Rapaport

SummaryCultured human umbilical vein endothelial cells (HUVEC) have been reported to produce extrinsic pathway inhibitor (EPI), the factor Xa-dependent inhibitor of factor VHa/tissue factor (TF). We examined the release of this inhibitor from HUVEC as a function of their growth state and in response to the induction of endothelial cell TF activity. HUVEC constitutively produced significant amounts of EPI at all stages of their growth in culture including the post-confluent state. Rate of release varied over a 3-fold range for primary cultures from 12 different batches of pooled umbilical cord cells. Constitutive EPI release was unaltered during a 6 hour period of induction of TF activity with thrombin or phorbol ester but slowed during longer incubation of the cells with phorbol ester. Whereas plasma contains two molecular weight forms of EPI, only the higher of these two molecular weight forms was demonstrable by Western analysis of HUVEC supernatants with 125I-factor Xa as the ligand.


2007 ◽  
Vol 114 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Jianlin Huang ◽  
Zhuofeng Lin ◽  
Minqi Luo ◽  
Caisheng Lu ◽  
Michelle H. Kim ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1469 ◽  
Author(s):  
Chung-Sheng Shi ◽  
Kuan-Lin Kuo ◽  
Mei-Sin Chen ◽  
Po-Ming Chow ◽  
Shing-Hwa Liu ◽  
...  

Cancer cells rely on aberrant transcription for growth and survival. Cyclin-dependent kinases (CDKs) play critical roles in regulating gene transcription by modulating the activity of RNA polymerase II (RNAPII). THZ1, a selective covalent inhibitor of CDK7, has antitumor effects in several human cancers. In this study, we investigated the role and therapeutic potential of CDK7 in regulating the angiogenic activity of endothelial cells and human renal cell carcinoma (RCC). Our results revealed that vascular endothelial growth factor (VEGF), a critical activator of angiogenesis, upregulated the expression of CDK7 and RNAPII, and the phosphorylation of RNAPII at serine 5 and 7 in human umbilical vein endothelial cells (HUVECs), indicating the transcriptional activity of CDK7 may be involved in VEGF-activated angiogenic activity of endothelium. Furthermore, through suppressing CDK7 activity, THZ1 suppressed VEGF-activated proliferation and migration, as well as enhanced apoptosis of HUVECs. Moreover, THZ1 inhibited VEGF-activated capillary tube formation and CDK7 knockdown consistently diminished tube formation in HUVECs. Additionally, THZ1 reduced VEGF expression in human RCC cells (786-O and Caki-2), and THZ1 treatment inhibited tumor growth, vascularity, and angiogenic marker (CD31) expression in RCC xenografts. Our results demonstrated that CDK7-mediated transcription was involved in the angiogenic activity of endothelium and human RCC. THZ1 suppressed VEGF-mediated VEGFR2 downstream activation of angiogenesis, providing a new perspective for antitumor therapy in RCC patients.


Sign in / Sign up

Export Citation Format

Share Document